Brazilian green propolis is known as an appreciable natural antioxidant with abundant polyphenolic compounds. For quality control, a fingerprint-efficacy study of Brazilian green propolis was carried out in this work. Chemical fingerprints of Brazilian green propolis from 22 different sources were determined by HPLC and investigated by similarity analysis. The fingerprint-efficacy relationships between chemical fingerprint and DPPH radical-scavenging activity were established. The results showed that 14 characteristic common peaks were identified, and 9 compounds were discovered with free radical-scavenging activities. Caffeoylquinic acids and artepillin C might be the major effective components for quality control of Brazilian green propolis due to their specificity and strong antioxidant activity. This study provides new markers for the quality assessment of Brazilian green propolis and its derived products.
A RP-high-performance liquid chromatography (HPLC) method was developed for quality control of Chinese propolis by simultaneous analysis of 12 flavonoids and 8 phenolic acids. The results showed that vanillic acid, rutin, myricetin, and luteolin were not detected in all of the analyzed propolis and poplar tree gum samples. The caffeic acid, ferulic acid and p-coumaric acid were not detected in poplar tree gum but were detected in propolis, which suggest that they are practical indexes of distinguishing propolis from poplar tree gum. The flavonoid profiles of poplar tree gum were found to be similar to those of propolis, which are dominated by pinobanksin, pinocembrin, 3-O-acetylpinobanksin, chrysin, and galangin. Therefore, the proposed method could be applied to exclude poplar tree gum from propolis with cafferic acid, ferulic acid, and p-coumaric acid as qualitative markers, and distinguish poplar source resin from other illegal substances, and evaluate the quality grading of poplar-type propolis with pinobanksin, pinocembrin, 3-O-acetylpinobanksin, chrysin, and galangin as qualitative and quantitative markers.
Context Numerous studies have reported that propolis possesses strong antioxidant activities. However, their antioxidant molecular mechanisms are unclear. Objective We utilize ethanol extracts of Chinese propolis (EECP) as a reference to compare ethanol extracts of Eucalyptus propolis (EEEP) with ethanol extracts of Baccharis propolis (EEBGP) based on their antioxidant capacities and underlying molecular mechanisms. Materials and methods HPLC and chemical analysis are utilized to evaluate compositions and antioxidant activities. ROS-eliminating effects of EEBGP (20-75 mg/mL), EEEP (1.25-3.75 mg/mL) and EECP (1.25-5 mg/mL) are also determined by flow cytometry analysis. Moreover, we compared antioxidant capacities by determining their effects on expressions of antioxidant genes in RAW264.7 cells with qRT-PCR, western blot and confocal microscopy analysis. Results EEBGP mainly contains chlorogenic acid (8.98 ± 0.86 mg/g), kaempferide (11.18 ± 8.31 mg/g) and artepillin C (107.70 ± 10.86 mg/g), but EEEP contains 10 compositions, whereas EECP contains 17 compositions. Meantime, although EEEP shows DPPH (IC 50 19.55 ± 1.28), ABTS (IC 50 20.0 ± 0.31) and reducing power (2.70 ± 0.08 mmol TE/g) better than EEBGP's DPPH (IC 50 43.85 ± 0.54), ABTS (IC 50 38.2 ± 0.33) and reducing power (1.53 ± 0.05 mmol TE/g), EEBGP exerts much higher ROS inhibition rate (40%) than EEEP (under 20%).
Chinese propolis (CP), an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T), we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS), heat-inactivated Escherichia coli, and Staphylococcus aureus exhibited significant decreases in cell viability while TNF-α and lipoteichoic acid (LTA) did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-α mRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin) had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis.
As commercialisation of Brazilian green propolis is going on, quality evaluation and authenticity are important. The result demonstrated that artepillin C found by far in Brazilian green propolis by HPLC-ESI-MS/MS analysis, while a small interferent may be mistaken as artepillin C in some propolis from China. A new HPLC quality control method as artepillin C for marker was developed, which is the primary assessment criteria for quality control of Brazilian green propolis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.