Indium-composition fluctuations in InGaN epitaxial layers are suppressed by using periodically-pulsed mixture (PPM) of N 2 and H 2 carrier gas. Photoluminescence, optical transmission, reciprocal space map and space-resolved cathodoluminescence are employed to characterize the InGaN epilayers. It is shown that the lateral In-fluctuations mainly occur as hillock-like In-rich regions. Both the number and size of In-rich regions are reduced by introducing the PPM carrier gas. Moreover, the measurements first experimentally demonstrate that the H 2 carrier gas has a stronger decomposition effect on the In-rich region. As the duration time of the PPM carrier gas increases, the reduction of In-content in the In-rich region reaches up to 12%, however, only 2% for the In-homogeneous region. These factors lead to the suppression of In-fluctuations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.