Partial registration for point clouds plays an important role in various fields such as 3D mapping reconstruction, remote sensing, unmanned driving, and cultural heritage protection. Unfortunately, partial registration is challenging due to difficulties such as the low overlap ratio of two point clouds and the perturbation in the orderless and sparse 3D point clouds. Thus, a variety of the 3D shape context descriptors are introduced for finding the optimal matching. However, extracting geometric features and descriptors are time consuming and easily degenerated by noise. To overcome these problems, we introduce a parallel coarse-to-fine partial registration method. Our contributions can be summarized as: Firstly, a robust coarse trimmed method is proposed to estimate the coarse overlap area and the initial transformation via fast bilateral denoising and parallel point feature histogram (PPFH) descriptor aligning. Secondly, an accelerated fine registration procedure is conducted by a parallel trimmed iterative closest point (PTrICP) method. Moreover, most parts of our coarse-to-fine workflow are accelerated under the Graphics Processing Unit (GPU) parallel execution mode for efficiency. Thirdly, we extend our method from the rigid registration to the isotropic scaling registration, which improves its applicability. Experiments have demonstrated that our method is feasible and robust in various situations, including the low overlap ratio, outlier, noise and scaling.
Purpose Partial alignment for 3 D point sets is a challenging problem for laser calibration and robot calibration due to the unbalance of data sets, especially when the overlap of data sets is low. Geometric features can promote the accuracy of alignment. However, the corresponding feature extraction methods are time consuming. The purpose of this paper is to find a framework for partial alignment by an adaptive trimmed strategy. Design/methodology/approach First, the authors propose an adaptive trimmed strategy based on point feature histograms (PFH) coding. Second, they obtain an initial transformation based on this partition, which improves the accuracy of the normal direction weighted trimmed iterative closest point (ICP) method. Third, they conduct a series of GPU parallel implementations for time efficiency. Findings The initial partition based on PFH feature improves the accuracy of the partial registration significantly. Moreover, the parallel GPU algorithms accelerate the alignment process. Research limitations/implications This study is applicable to rigid transformation so far. It could be extended to non-rigid transformation. Practical implications In practice, point set alignment for calibration is a technique widely used in the fields of aircraft assembly, industry examination, simultaneous localization and mapping and surgery navigation. Social implications Point set calibration is a building block in the field of intelligent manufacturing. Originality/value The contributions are as follows: first, the authors introduce a novel coarse alignment as an initial calibration by PFH descriptor similarity, which can be viewed as a coarse trimmed process by partitioning the data to the almost overlap part and the rest part; second, they reduce the computation time by GPU parallel coding during the acquisition of feature descriptor; finally, they use the weighted trimmed ICP method to refine the transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.