Fucoxanthin is a major light-harvesting pigment in ecologically important algae such as diatoms, haptophytes, and brown algae (Phaeophyceae). Therefore, it is a major driver of global primary productivity. Species of these algal groups are brown colored because the high amounts of fucoxanthin bound to the proteins of their photosynthetic machineries enable efficient absorption of green light. While the structure of these fucoxanthin-chlorophyll proteins has recently been resolved, the biosynthetic pathway of fucoxanthin is still unknown. Here, we identified two enzymes central to this pathway by generating corresponding knockout mutants of the diatom Phaeodactylum tricornutum that are green due to the lack of fucoxanthin. Complementation of the mutants with the native genes or orthologs from haptophytes restored fucoxanthin biosynthesis. We propose a complete biosynthetic path to fucoxanthin in diatoms and haptophytes based on the carotenoid intermediates identified in the mutants and in vitro biochemical assays. It is substantially more complex than anticipated and reveals diadinoxanthin metabolism as the central regulatory hub connecting the photoprotective xanthophyll cycle and the formation of fucoxanthin. Moreover, our data show that the pathway evolved by repeated duplication and neofunctionalization of genes for the xanthophyll cycle enzymes violaxanthin de-epoxidase and zeaxanthin epoxidase. Brown algae lack diadinoxanthin and the genes described here and instead use an alternative pathway predicted to involve fewer enzymes. Our work represents a major step forward in elucidating the biosynthesis of fucoxanthin and understanding the evolution, biogenesis, and regulation of the photosynthetic machinery in algae.
Exploration of new organometallic systems based on polyhedral boron clusters has the potential to solve challenging chemical problems such as the stabilization of reactive intermediates and transition-state-like species postulated for E–H (E = H, B, C, Si) bond activation reactions. We report on facile and clean B–H activation of a hydroborane by a new iridium boron cluster complex. The product of this reaction is an unprecedented and fully characterized transition metal-stabilized boron cation or borenium. Moreover, this intermediate bears an unusual intramolecular B···H interaction between the hydrogen originating from the activated hydroborane and the cyclometallated metal-bonded boron atom of the boron cluster. This B···H interaction is proposed to be an arrested insertion of hydrogen into the Bcage–metal bond and the initiation step for iridium “cage-walking” around the upper surface of the boron cluster. The “cage-walking” process is supported by the hydrogen–deuterium exchange observed at the boron cluster, and a mechanism is proposed on the basis of theoretical methods with a special focus on the role of noncovalent interactions. All new compounds were isolated and fully characterized by NMR spectroscopy and elemental analysis. Key compounds were studied by single crystal X-ray diffraction and X-ray photoelectron spectroscopy.
The ketocarotenoid fucoxanthin and its derivatives can absorb blue-green light enriched in marine environments. Fucoxanthin is widely adopted by phytoplankton species as a main light-harvesting pigment, in contrast to land plants that primarily employ chlorophylls. Despite its supreme abundance in the oceans, the last steps of fucoxanthin biosynthesis have remained elusive. Here, we identified the carotenoid isomerase-like protein CRTISO5 as the diatom fucoxanthin synthase that is related to the carotenoid cis-trans isomerase CRTISO from land plants but harbors unexpected enzymatic activity. A crtiso5 knockout mutant in the model diatom Phaeodactylum tricornutum completely lacked fucoxanthin and accumulated the acetylenic carotenoid phaneroxanthin. Recombinant CRTISO5 converted phaneroxanthin into fucoxanthin in vitro by hydrating its carbon-carbon triple bond, instead of functioning as an isomerase. Molecular docking and mutational analyses revealed residues essential for this activity. Furthermore, a photophysiological characterization of the crtiso5 mutant revealed a major structural and functional role of fucoxanthin in photosynthetic pigment-protein complexes of diatoms. As CRTISO5 hydrates an internal alkyne physiologically, the enzyme has unique potential for biocatalytic applications. The discovery of CRTISO5 illustrates how neofunctionalization leads to major diversification events in evolution of photosynthetic mechanisms, and the prominent brown coloration of most marine photosynthetic eukaryotes.
The construction of chiral motifs containing nonadjacent stereocenters stands out as a major challenge as they are usually constructed in separate steps utilizing different chiral catalysts. Therefore, the development of new strategies to streamline the construction of such complex motifs has become a major focus of asymmetric synthesis. We report here an unprecedented asymmetric tandem Mannich-isomerization reaction that allows the direct construction of 1,4-stereocenters in a highly stereoselective manner. This asymmetric transformation demonstrated the potential of a tandem nucleophilic addition-isomerization reaction as a broadly useful strategy for the efficient construction of 1,4-stereocenters. Notably, this tandem reaction was mediated by a single chiral betaine as a dual-functional catalyst, promoting first an enantioselective intermolecular C–C bond forming reaction and next a stereoselective intramolecular 1,3-proton transfer reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.