Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.
This paper addresses the problem of detecting the presence and location of a small low emission source inside an object, when the background noise dominates. This problem arises, for instance, in some homeland security applications. The goal is to reach the signal-to-noise ratio levels in the order of 10−3. A Bayesian approach to this problem is implemented in 2D. The method allows inference not only about the existence of the source, but also about its location. We derive Bayes factors for model selection and estimation of location based on Markov chain Monte Carlo simulation. A simulation study shows that with sufficiently high total emission level, our method can effectively locate the source.
We consider the problem of testing multiple null hypotheses, where a decision to reject or retain must be made for each one and embedding incorrect decisions into a real‐life context may inflict different losses. We argue that traditional methods controlling the Type I error rate may be too restrictive in this situation and that the standard familywise error rate may not be appropriate. Using a decision‐theoretic approach, we define suitable loss functions for a given decision rule, where incorrect decisions can be treated unequally by assigning different loss values. Taking expectation with respect to the sampling distribution of the data allows us to control the familywise expected loss instead of the conventional familywise error rate. Different loss functions can be adopted, and we search for decision rules that satisfy certain optimality criteria within a broad class of decision rules for which the expected loss is bounded by a fixed threshold under any parameter configuration. We illustrate the methods with the problem of establishing efficacy of a new medicinal treatment in non‐overlapping subgroups of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.