A novel all-solid-state, hybrid solar cell based on organic-inorganic metal halide perovskite (CH 3 NH 3 PbX 3 ) materials has attracted great attention from the researchers all over the world and is considered to be one of the top 10 scientific breakthroughs in 2013. The perovskite materials can be used not only as light-absorbing layer, but also as an electron/hole transport layer due to the advantages of its high extinction coefficient, high charge mobility, long carrier lifetime, and long carrier diffusion distance. The photoelectric power conversion efficiency of the perovskite solar cells has increased from 3.8% in 2009 to 22.1% in 2016, making perovskite solar cells the best potential candidate for the new generation of solar cells to replace traditional silicon solar cells in the future. In this paper, we introduce the development and mechanism of perovskite solar cells, describe the specific function of each layer, and focus on the improvement in the function of such layers and its influence on the cell performance. Next, the synthesis methods of the perovskite light-absorbing layer and the performance characteristics are discussed. Finally, the challenges and prospects for the development of perovskite solar cells are also briefly presented.
Osteoblast reactions to topographic structures of titanium play a key role in host tissue responses and the final osseointegration. Since it is difficult to fabricate micro- and nano-scale structures on titanium surfaces, little is known about the mechanism whereby the topography of titanium surfaces exerts its effects on cell behavior at the cellular level. In the present study, the titanium surface was structured in micron- and submicron-scale ranges by anodic oxidation in either 0.2 M H3PO4 or 0.03 M calcium glycerophosphate with 0.15 calcium acetate. The average dimensions of pores in the structured surface were about 0.5 and 2 µm in diameter, with roughness averaging at 0.2 and 0.4 µm, respectively. Enhanced attachment of cells (SaOS-2) was shown on micron- and submicron-scale structures. Initial cell reactions to different titanium surfaces, e.g. the development of the actin-containing structures, are determined by the different morphology of the surfaces. It is demonstrated that on either micron- or submicron-structured surfaces, many well-developed filopodia were observed to be primary adhesion structures in cell-substrate interactions, and some of them entered pores using their distinct tips or points along their length for initial attachment. Therefore, porous structures at either micro- or submicrometre scale supply positive guidance cues for anchorage-dependent cells to attach, leading to enhanced cell attachment. In contrast, the cells attached to a smooth titanium surface by focal contacts around their periphery as predominant adhesion structures, since repulsive signals from the environment led to retraction of the filopodia back to the cell bodies. These cells showed well-organized stress fibres, which exert tension across the cell body, resulting in flattened cells.
A full understanding of RNA-mediated biology would require the knowledge of three-dimensional (3D) structures, structural flexibility, and stability of RNAs. To predict RNA 3D structures and stability, we have previously proposed a three-bead coarse-grained predictive model with implicit salt/solvent potentials. In this study, we further develop the model by improving the implicit-salt electrostatic potential and including a sequence-dependent coaxial stacking potential to enable the model to simulate RNA 3D structure folding in divalent/monovalent ion solutions. The model presented here can predict 3D structures of RNA hairpins with bulges/internal loops (<77 nucleotides) from their sequences at the corresponding experimental ion conditions with an overall improved accuracy compared to the experimental data; the model also makes reliable predictions for the flexibility of RNA hairpins with bulge loops of different lengths at several divalent/monovalent ion conditions. In addition, the model successfully predicts the stability of RNA hairpins with various loops/stems in divalent/monovalent ion solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.