Implantable neural microelectrodes that can record extracellular biopotentials from small, targeted groups of neurons are critical for neuroscience research and emerging clinical applications including brain-controlled prosthetic devices. The crucial material-dependent problem is developing microelectrodes that record neural activity from the same neurons for years with high fidelity and reliability. Here, we report the development of an integrated composite electrode consisting of a carbon-fibre core, a poly(p-xylylene)-based thin-film coating that acts as a dielectric barrier and that is functionalized to control intrinsic biological processes, and a poly(thiophene)-based recording pad. The resulting implants are an order of magnitude smaller than traditional recording electrodes, and more mechanically compliant with brain tissue. They were found to elicit much reduced chronic reactive tissue responses and enabled single-neuron recording in acute and early chronic experiments in rats. This technology, taking advantage of new composites, makes possible highly selective and stealthy neural interface devices towards realizing long-lasting implants.
Biocompatible anisotropic polymer particles with bipolar affinity towards human endothelial cells are a novel type of building blocks for microstructured bio-hybrid materials. Functional polarity due to two biologically distinct hemispheres has been achieved by synthesis of anisotropic particles via electro-hydrodynamic co-jetting of two different polymer solutions and subsequent selective surface modification.
We report that nanostructuring via dip-pen nanolithography can be used for modification of a broad range of different substrates (polystyrene, Teflon, stainless steel, glass, silicon, rubber, etc.) without the need for reconfiguring the underlying printing technology. This is made possible through the use of vapor-based coatings that can be deposited on these substrates with excellent conformity, while providing functional groups for subsequent spatially directed click chemistry via dip-pen nanolithography. Pattern quality has been compared on six different substrates demonstrating that this approach indeed results in a surface modification protocol with potential use for a wide range of biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.