The effects of ultrasound on the molecular weight of apple pectin were investigated. The structure and rheological properties of the degradation products were also tentatively identified by High Performance Liquid Chromatography-Photodiode Array Detector (HPLC-PAD), Infrared spectroscopy (IR), Nuclear Magnetic Resonance spectroscopy (NMR) and Rheometer. The results indicated that the weight-average molecular weight of apple pectin decreased obviously after ultrasound treatment. The molecular weight of degradation products had a uniform and narrow distribution. Ultrasound intensity and temperature play an important role in the degradation reaction. Degradation kinetics model of apple pectin fitted to 1/M(t) - 1/M(0) = kt from 5 to 45 °C. The degree of methylation of apple pectin reduced according to IR analysis when ultrasound was applied. Ultrasound treatment could not alter the primary structure of apple pectin according to the results determined by HPLC, IR and NMR. Meanwhile, the viscosity of apple pectin was 10(3) times as large as that of ultrasound-treated apple pectin. The ultrasound-treated apple pectin showed predominantly viscous responses (G' < G") over the same frequency range. The results suggested that ultrasound provided a viable alternative method for the modification of pectin.
Mapping major quantitative trait loci (QTL) responsible for rice seed germinability under low temperature (GULT) can provide valuable genetic source for improving cold tolerance in rice breeding. In this study, 124 rice backcross recombinant inbred lines (BRILs) derived from a cross indica cv. Changhui 891 and japonica cv. 02428 were genotyped through re-sequencing technology. A bin map was generated which includes 3057 bins covering distance of 1266.5 cM with an average of 0.41 cM between markers. On the basis of newly constructed high-density genetic map, six QTL were detected ranging from 40 to 140 kb on Nipponbare genome. Among these, two QTL qCGR8 and qGRR11 alleles shared by 02428 could increase GULT and seed germination recovery rate after cold stress, respectively. However, qNGR1 and qNGR4 may be two major QTL affecting indica Changhui 891germination under normal condition. QTL qGRR1 and qGRR8 affected the seed germination recovery rate after cold stress and the alleles with increasing effects were shared by the Changhui 891 could improve seed germination rate after cold stress dramatically. These QTL could be a highly valuable genetic factors for cold tolerance improvement in rice lines. Moreover, the BRILs developed in this study will serve as an appropriate choice for mapping and studying genetic basis of rice complex traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.