The mammalian focal adhesion proteins Pinch1/2 activate integrins and promote cell–extracellular matrix adhesion and migration; however, their roles in adipose tissue and metabolism are unclear. Here we find that high-fat diet (HFD) feeding dramatically increases expression of Pinch1/2 proteins in white adipose tissue (WAT) in mice. Furthermore, expression of Pinch1 is largely upregulated in WAT in leptin-deficient ob/ob type 2 diabetic mice and obese humans. While mice with loss of Pinch1 in adipocytes or global Pinch2 do not display any notable phenotypes, deleting Pinch1 in adipocytes and Pinch2 globally significantly decreases body weight and WAT mass, but not brown adipose tissue mass, in HFD-fed, but not normal chow diet–fed, mice. Pinch loss ameliorates HFD-induced glucose intolerance and fatty liver. After HFD challenge, Pinch loss slightly but significantly accelerates energy expenditure. While Pinch loss decreases adipocyte size and alters adipocyte size distribution, it greatly accelerates cell apoptosis primarily in epididymal WAT and to a lesser extent in subcutaneous WAT. In vitro studies demonstrate that Pinch loss accelerates adipocyte apoptosis by activating the Bim/Caspase-8 pathway. In vivo, genetic ablation of Caspase-8 expression in adipocytes essentially abolishes the ameliorating effects of Pinch deficiency on obesity, glucose intolerance, and fatty liver in mice. Thus, we demonstrate a previously unknown function of Pinch in control of adipose mass, glucose, and fat metabolism via modulation of adipocyte apoptosis. We may define a novel target for the prevention and treatment of metabolic diseases, such as obesity and diabetes.
Nonalcoholic fatty liver disease (NAFLD) affects a large population with incompletely defined mechanism(s). Here we report that Kindlin-2 is dramatically up-regulated in livers in obese mice and patients with NAFLD. Kindlin-2 haploinsufficiency in hepatocytes ameliorates high-fat diet (HFD)-induced NAFLD and glucose intolerance without affecting energy metabolism in mice. In contrast, Kindlin-2 overexpression in liver exacerbates NAFLD and promotes lipid metabolism disorder and inflammation in hepatocytes. A C-terminal region (aa 570-680) of Kindlin-2 binds to and stabilizes Foxo1 by inhibiting its ubiquitination and degradation through the Skp2 E3 ligase. Kindlin-2 deficiency increases Foxo1 phosphorylation at Ser256, which favors its ubiquitination by Skp2. Thus, Kindllin-2 loss down-regulates Foxo1 protein in hepatocytes. Foxo1 overexpression in liver abrogates the ameliorating effect of Kindlin-2 haploinsufficiency on NAFLD in mice. Finally, AAV8-mediated shRNA knockdown of Kindlin-2 in liver alleviates NAFLD in obese mice. Collectively, we demonstrate that Kindlin-2 insufficiency protects against fatty liver by promoting Foxo1 degradation.
Inflammatory liver diseases are a major cause of morbidity and mortality worldwide; however, underlying mechanisms are incompletely understood. Here we show that deleting the focal adhesion protein Kindlin-2 expression in hepatocytes using the Alb-Cre transgenic mice causes a severe inflammation, resulting in premature death. Kindlin-2 loss accelerates hepatocyte apoptosis with subsequent compensatory cell proliferation and accumulation of the collagenous extracellular matrix, leading to massive liver fibrosis and dysfunction. Mechanistically, Kindlin-2 loss abnormally activates the tumor necrosis factor (TNF) pathway. Blocking activation of the TNF signaling pathway by deleting TNF receptor or deletion of Caspase 8 expression in hepatocytes essentially restores liver function and prevents premature death caused by Kindlin-2 loss. Finally, of translational significance, adeno-associated virus mediated overexpression of Kindlin-2 in hepatocytes attenuates the D-galactosamine and lipopolysaccharide-induced liver injury and death in mice. Collectively, we establish that Kindlin-2 acts as a novel intrinsic inhibitor of the TNF pathway to maintain liver homeostasis and may define a useful therapeutic target for liver diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.