Aims: To determine whether irisin could improve endothelial dysfunction by regulating heme oxygenase-1(HO-1)/adiponectin axis in perivascular adipose tissue (PVAT) in obesity. Methods: Male C57BL/6 mice were fed with a high-fat diet (HFD) with or without irisin treatment. Endothelium-dependent vasorelaxation of the thoracic aorta with or without PVAT (PVAT+ or PVAT–) was determined. Western blot was employed to determine the levels of HO-1 and adiponectin in PVAT. UCP-1, Cidea, and TNF-α gene expression in PVAT were tested by real-time PCR. Results: The presence of PVAT significantly impaired endothelial function in the HFD mice. Treatment of HFD mice with irisin significantly restored this impairment and improved endothelial function in vivo or ex vivo. Incubated aortic rings (PVAT-) with PVAT-derived conditioned medium (CM) from HFD mice impaired endothelial function in control mice. This impairment was prevented by incubating the aortic rings (PVAT-) from HFD mice with PVAT-derived CM from irisin. However, the beneficial effects were partly attenuated in the presence of HO-1 inhibitor and adiponectin receptor blocking peptide. Treatment of HFD mice with irisin significantly increased NO production, protein levels of HO-1 and adiponectin, mRNA expressions of UCP-1 and Cidea, and decreased superoxide production and TNF-α expression in PVAT. Conclusion: Irisin improved endothelial function by modulating HO-1/ adiponectin axis in PVAT in HFD-induced obese mice. These findings suggest that regulating PVAT function may be a potential mechanism by which irisin improves endothelial function in obesity.
SummaryThe anti-contractile property of perivascular adipose tissue (PVAT) is abolished through an endothelium-dependent pathway in obesity. C1q/tumor necrosis factorrelated protein (CTRP)9 improved endothelial function by promoting endotheliumdependent vasodilatation. The aims of this study were to investigate whether CTRP9 improves the anti-contractile effect of PVAT and protects against PVAT dysfunction in obese mice. The mice were treated with a high-fat diet with or without CTRP9 treatment. Thoracic aortas with or without PVAT (PVAT+ or PVAT−) were prepared, and concentration-dependent responses to phenylephrine were measured. Obese mice showed a significantly increased contractile response, which was suppressed by CTRP9 treatment both with and without PVAT. PVAT significantly reduced the anticontractile effect in obese mice, which was partially restored by CTRP9 treatment.
Treatment of the aortic rings (PVAT+) with inhibitors of AMP protein kinase (AMPK),Akt and endothelial nitric oxide synthase (eNOS) attenuated the beneficial effect of CTRP9 on PVAT. Similar results were observed when we pretreated the aortic rings with CTRP9 ex vivo. CTRP9 significantly enhanced the phosphorylation levels of AMPK, Akt and eNOS, and reduced superoxide production and TNF-α levels in PVAT from obese mice. Our study suggests that CTRP9 enhanced the anti-contractile effect of PVAT and improved PVAT function by activating the AMPK-eNOS pathway in obese mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.