Band gap engineering of atomically thin two-dimensional layered materials is critical for their applications in nanoelectronics, optoelectronics, and photonics. Here we report, for the first time, a simple one-step chemical vapor deposition approach for the simultaneous growth of alloy MoS2xSe2(1-x) triangular nanosheets with complete composition tunability. Both the Raman and the photoluminescence studies show tunable optical properties consistent with composition of the alloy nanosheets. Importantly, all samples show a single bandedge emission peak, with the spectral peak position shifting from 668 nm (for pure MoS2) to 795 nm (for pure MoSe2), indicating the high quality for these complete composition alloy nanosheets. These band gap engineered 2D structures could open up an exciting opportunity for probing their fundamental physical properties in 2D and may find diverse applications in functional electronic/optoelectronic devices.
In Arabidopsis thaliana, signal transduction of the hormone ethylene involves at least two receptors, ETR1 and ERS, both of which are members of the two-component histidine protein kinase family that is prevalent in prokaryotes. The pathway also contains a negative regulator of ethylene responses, CTR1, which closely resembles members of the Raf protein kinase family. CTR1 is thought to act at or downstream of ETR1 and ERS based on double mutant analysis; however, the signaling mechanisms leading from ethylene perception to the regulation of CTR1 are unknown. By using the yeast two-hybrid assay, we detected a specific interaction between the CTR1 amino-terminal domain and the predicted histidine kinase domain of ETR1 and ERS. We subsequently verified these interactions by using an in vitro protein association assay(s). In addition, we determined that the amino-terminal domain of CTR1 can associate with the predicted receiver domain of ETR1 in vitro. Based on deletion analysis, the portion of CTR1 that interacts with ETR1 roughly aligns with the regulatory region of Raf kinases. These physical associations support the genetic evidence that CTR1 acts in the pathway of ETR1 and ERS and suggest that these interactions could be involved in the regulation of CTR1 activity.Ethylene has numerous effects on plant growth and development, such as fruit-ripening, organ abscission, seed germination, senescence, and the induction of certain defense responses (1). The cloning of genes corresponding to several ethylene-response mutants in Arabidopsis has begun to provide us with insight into the molecular basis of ethylene signal transduction (2-6). In Arabidopsis, there are at least two ethylene receptors, ETR1 and ERS, that are similar to each other. Plants appear to have multiple ethylene receptors; several different ETR1 and ERS homologs have been cloned recently from Arabidopsis (7) and tomato (8, 9). The ETR1 and ERS gene products are predicted to function as histidine protein kinases based on their sequence similarities with the two-component regulator family. The two-component regulators are prevalent in prokaryotes (10) and are starting to be identified in various eukaryotes, including fungi, slime mold, and higher plants (11,12); one of these, the Arabidopsis CKI1 protein, is potentially a receptor for cytokinin (13). The basic two-component system consists of a histidine autokinase sensor component that directs the activity of a cognate response regulator, which in turn controls downstream signaling (10). After autophosphorylation of the sensor kinase, the phosphoryl group is transferred from the histidine of the sensor kinase to an aspartic acid residue in the receiver domain of the response regulator (10). The ETR1 protein is an example of a hybrid histidine kinase because it contains both a histidine kinase domain and a receiver domain (2). ERS, in contrast, contains only a histidine kinase domain (3). The significance of having an attached receiver domain is unknown, and whether there are separate cognate...
Summary Activation of heterodimeric (α/β) integrin transmembrane receptors by the 270 kDa cytoskeletal protein talin is essential for many important cell adhesive and physiological responses. A key step in this process involves interaction of phosphotyrosine-binding (PTB) domain in the N-terminal head of talin (talin-H) with integrin β membrane-proximal cytoplasmic tails (β-MP-CTs). Compared to talin-H, intact talin exhibits low potency in inducing integrin activation. Using NMR spectroscopy, we show that the large C-terminal rod domain of talin (talin-R) interacts with talin-H and allosterically restrains talin in a closed conformation. We further demonstrate that talin-R specifically masks a region in talin-PTB where integrin β-MP-CT binds and competes with it for binding to talin-PTB. The inhibitory interaction is disrupted by a constitutively activating mutation (M319A) or by phosphatidylinositol 4,5-bisphosphate, a known talin activator. These data define a distinct autoinhibition mechanism for talin and suggest how it controls integrin activation and cell adhesion.
Recently, graphene-based semiconductor photocatalysts have attracted more attention because of their enhanced photocatalytic activity caused by interfacial charge transfer (IFCT). However, the effect of a chemical bond is rarely involved for the IFCT. In this work, TiO2/graphene composites with a chemically bonded interface were prepared by a facile solvothermal method using tetrabutyl orthotitanate (TBOT) as the Ti source. The chemically bonded TiO2/graphene composites effectively enhanced their photocatalytic activity in photodegradation of formaldehyde in air, and the graphene content exhibited an obvious influence on the photocatalytic activity. The prepared composite with 2.5 wt % graphene (G2.5-TiO2) showed the highest photocatalytic activity, exceeding that of Degussa P25, as-prepared pure TiO2 nanoparticles, and the mechanically mixed TiO2/graphene (2.5 wt %) composite by a factor of 1.5, 2.6, and 2.3, respectively. The enhancement in the photocatalytic activity was attributed to the synergetic effect between graphene and TiO2 nanoparticles. Other than the graphene as an excellent electron acceptor and transporter, the enhanced photocatalytic activity was caused by IFCT through a C–Ti bond, which markedly decreased the recombination of electron–hole pairs and increased the number of holes participating in the photooxidation process, confirmed by XPS analysis, the gaseous phase transient photocurrent response, electrochemical impedance spectroscopy, and photoluminescence spectra. This work about effective IFCT through a chemically bonded interface can provide new insights for directing the design of new heterogeneous photocatalysts, which can be applied in environmental protection, water splitting, and photoelectrochemical conversion.
Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.