Dissolved organic matter (DOM) was characterized during five basin-scale investigations (either after storms or in droughts) in Jiulong River, China that is affected by the Asian Monsoon, tropical storms and anthropogenic activities. Dissolved organic carbon concentration, DOM absorption and fluorescence (excitation-emission matrix spectra, EEMs) were measured. Parallel factor analysis (PARAFAC) of EEMs identified three humic-like and two protein-like fluorescent components. DOM concentration was highest at two polluted stations in droughts while lowest in pristine headwaters (station N1). DOM concentration increased most evidently after storms in May, 2009, indicating effective flushing of DOM from land to the river close to the onset of flood season. The protein-like fraction in PARAFAC results decreased after storms in May and June, 2009, highlighting changes in DOM composition and thus its environmental role. Dam constructions likely increased the residence time of DOM in river, making the inflow of DOM during storms have more implications for the riverine (in comparison with estuarine) biogeochemical processes. The effect of storm in August, 2008 after intense DOM flushing during several preceding storms, was not evident. A severe dinoflagellate algal bloom occurred during the extreme drought in the lower watershed, which increased DOM concentration and the protein-like fraction at impacted stations. Different DOM compositions during and after algal bloom were discriminated using the two protein-like components. This study demonstrates the importance of hydrologic regimes and anthropogenic activities on freshwater DOM and its environmental role, which has implications for a number of other rivers that share similar characteristics.National Natural Science Foundation of China [40810069004, 40776041, 40676046]; National High Technology Research and Development Program of China [2007AA091704]; Program for New Century Excellent Talents (NCET
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.