Ophiopogonis Radix, also known as Maidong in Chinese, is largely produced in the Sichuan and Zhejiang provinces: “Chuan-maidong (CMD)” and “Zhe-maidong (ZMD),” respectively. This study aimed to distinguish and evaluate the quality of CMD and ZMD. In this study, the tubers of CMD and ZMD were investigated using UPLC-Q/TOF-MS, GC-MS, and LC-MS methods, respectively. Overall, steroidal saponins, homoisoflavonoids, amino acids, and nucleosides were quickly identified. Furthermore, multivariate statistical analysis revealed that CMD and ZMD could be separated. Moreover, CMD showed higher levels of 4-aminobutanoic acid, glycine, l-proline, monoethanolamine, and serine than ZMD. Besides, the levels of chlorogenic acid, traumatic acid, cytidine, cadaverine, pyridoxine 5-phosphate, glutinone, and pelargonidin 3-O-(6-O-malonyl-β-d-glucoside) were remarkably higher in ZMD than in CMD. Furthermore, these different constituents were mainly associated with galactose metabolism; starch and sucrose metabolism; cysteine and methionine metabolism; valine, leucine, and isoleucine biosynthesis; and glycerophospholipid metabolism. In general, these results showed many differences between the bioactive chemical constituents of Ophiopogon japonicus from different production areas, where ZMD performed better in the quality assessment than CMD, and that UPLC-Q/TOF-MS, GC-MS, and LC-MS are effective methods to discriminate medicinal herbs from different production areas.
Alzheimer’s disease mainly affects elderly population leading to impairment in cogitation. A lack of clear understanding of the mechanism of Alzheimer’s disease has led to a lack of definite therapeutic option. Herein we have explored the effect of Onjisaponin B derived from the traditional Chinese herbal medicinal plant Radix Polygalae in an animal model of Alzheimer’s disease. Onjisaponin B significantly reduced the severity of experimental Alzheimer’s disease in mice measured by learning abilities, spatial learning, memory, and recognition of novel objects via modulation of hippocampal neuroplasticity. Neuroplasticity was further confirmed by silver staining and expression of major proteins in the hippocampal synapse. Furthermore, Onjisaponin B remarkably altered the morphology of neuron dendrites in the CA1 region by increasing the numbers of apical and basal dendrites of neurons, and the length of neurons. In conclusion, Onjisaponin B might modulate neuroplasticity to attenuate Alzheimer’s disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.