BackgroundBlueberry is an economically important fruit crop in Ericaceae family. The substantial quantities of flavonoids in blueberry have been implicated in a broad range of health benefits. However, the information regarding fruit development and flavonoid metabolites based on the transcriptome level is still limited. In the present study, the transcriptome and gene expression profiling over berry development, especially during color development were initiated.ResultsA total of approximately 13.67 Gbp of data were obtained and assembled into 186,962 transcripts and 80,836 unigenes from three stages of blueberry fruit and color development. A large number of simple sequence repeats (SSRs) and candidate genes, which are potentially involved in plant development, metabolic and hormone pathways, were identified. A total of 6429 sequences containing 8796 SSRs were characterized from 15,457 unigenes and 1763 unigenes contained more than one SSR. The expression profiles of key genes involved in anthocyanin biosynthesis were also studied. In addition, a comparison between our dataset and other published results was carried out.ConclusionsOur high quality reads produced in this study are an important advancement and provide a new resource for the interpretation of high-throughput data for blueberry species whether regarding sequencing data depth or species extension. The use of this transcriptome data will serve as a valuable public information database for the studies of blueberry genome and would greatly boost the research of fruit and color development, flavonoid metabolisms and regulation and breeding of more healthful blueberries.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-016-0866-5) contains supplementary material, which is available to authorized users.
Picea wilsonii is widely used for a forestation and landscaping in China. However, the molecular mechanisms underlying abiotic stress tolerance in this species remain elusive. In this study, we examined the transcriptomic changes induced by drought and salt stress in 8-week-old seedlings of P. wilsonii via RNA-Seq analysis; seedlings grown under normal conditions (without abiotic stress) served as a control. Approximately 36.26 Gb of transcriptome data were obtained from the three treatments. A total of 4171 (2579 up-regulated and 1732 down-regulated) and 3438 (1592 up-regulated and 1706 down-regulated) differentially expressed genes were identified under drought and salt treatments, respectively. Both RNA-Seq and qRT-PCR analyses showed that the expression of PwNAC genes, including PwNAC11, 24, 36, 38, 45, 47, 51 and 52, was greatly induced not only by salt stress but also by drought treatment, suggesting that these genes are involved in both salt and drought stress resistance in P. wilsonii. This is the first report of the transcriptome analysis of P. wilsonii. Our data will serve as a valuable genomic resource for the further characterization of the molecular mechanisms underlying abiotic stress tolerance in P. wilsonii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.