The aerodynamic mechanisms of bat flight have been studied using a numerical approach. Kinematic data acquired using a high resolution motion capture system was employed to simulate the unsteady air flow around a bat’s wings. A flapping bat wing contains many degrees of freedom, which make 3D motion tracking challenging. In order to overcome this challenge, an optical motion capture system of 21 cameras was used to reduce wing self-occlusion. Over the course of a meter-long flight, 108 discrete marker points on the bat’s wings (Pratt’s roundleaf bat, Hipposideros pratti) were tracked. The time evolution of the surface of each wing was computationally reconstructed in 3D space. The resulting kinematic model was interfaced with an unsteady incompressible flow solver using the immersed boundary method (IBM) and large eddy simulation (LES). Verification and validation of the flow simulation were conducted to establish accuracy. The aerodynamic forces calculated from the simulation compared well to the forces theoretically needed to sustain the observed flight trajectory. The transient flow field generated by the simulation allowed for the direct calculation of lift, drag, and power output of the bat during flight. The mean lift coefficient was found to be 3.21, and the flap cycle averaged aerodynamic power output was 1.05 W. Throughout the flap cycle, the planform area of the wings varied up to 46% between the largest and smallest values. During the upstroke, wing rotation was found to mitigate negative lift thereby improving overall flight efficiency. The high resolution motion capture and flow simulation framework presented here has the potential to facilitate the understanding of complex bat flight aerodynamics for both straight and maneuvering flight modes.
Bats, with highly articulated wings, are some of the most agile flyers in nature. A novel three-dimensional geometric decomposition framework is developed to reduce the complex kinematics of a bat wing into physical movements used to describe flapping flight: namely flapping, stroke plane deviation and pitching, together with cambering and flexion. The decomposition is combined with aerodynamic simulations to investigate the cumulative effect of each motion on force production, and their primary contribution to the unsteady vortex dynamics. For the nearly straight and level flight of Hipposideros pratti , results show that the flapping motion by itself induced a moderate drag and lift. Stroke plane deviation increased lift, and nullified the drag. With the inclusion of the pitching motion into the kinematics, lift production further increased by a factor of more than 2.5, and exhibited a positive net thrust by virtue of the favorable wing orientation during the upstroke. The primary contribution of cambering, which included a maximum chord line displacement of ≈40% standard mean chord, was the stabilization of the leading edge vortex during the downstroke. This increased mean lift by about 35% at the expense of net thrust. Flexion was perhaps the most complex motion with maximum displacements of 75% standard mean chord. This was instrumental in reducing the negative lift during the upstroke by preventing the formation of strong leading edge vortices. The aerodynamic effective angle of attack emerged as a heuristic parameter to describe lift and net thrust production across movements.
Bats fly with highly articulated and heavy wings. To understand their power requirements, we develop a three-dimensional reduced-order model, and apply it to flights of Cynopterus brachyotis , the lesser dog-faced fruit bat. Using previously measured wing kinematics, the model computes aerodynamic forces using blade element momentum theory, and incorporates inertial forces of the flapping wing using the measured mass distribution of the membrane wing and body. The two are combined into a Lagrangian equation of motion, and we performed Monte Carlo simulations to address uncertainties in measurement errors and modelling assumptions. We find that the camber of the armwing decreases with flight speed whereas the handwing camber is more independent of speed. Wing camber disproportionately impacts energetics, mainly during the downstroke, and increases the power requirement from 8% to 22% over flight speed U = 3.2–7.4 m s −1 . We separate total power into aerodynamic and inertial components, and aerodynamic power into parasitic, profile and induced power, and find strong agreement with previous theoretical and experimental studies. We find that inertia of wings help to balance aerodynamic forces, alleviating the muscle power required for weight support and thrust generation. Furthermore, the model suggests aerodynamic forces assist in lifting the heavy wing during upstroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.