A better understanding of the mechanism of adipose tissue differentiation is of paramount importance in the development of therapeutic strategies for the treatment and prevention of obesity and type 2 diabetes mellitus. Optimal results using tissue culture models can be expected only when the in vitro adipocyte resembles adipose tissue in vivo as closely as possible. In this study, we used tissue-engineering principles to develop a three-dimensional (3-D) culture system to mimic the geometry of adipose tissue in vivo. Mouse preadipocyte 3T3-L1 cells were seeded onto nonbiodegradable fibrous polyethylene terephthalate scaffolds and differentiated with a hormone cocktail consisting of insulin, dexamethasone, isobutylmethylxanthine, and fetal calf serum. Cell morphology, growth, differentiation, and function were studied by immunocytochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting, enzyme-linked immunosorbent assay, and oil red O staining. Cells grown on 3-D fibrous scaffolds were differentiated in situ by hormone induction with high efficiency (approximately 90%) as shown by scanning electron microscopy. Immunocytochemistry, immunoblot analysis, and RT-PCR revealed that the 3-D constructs expressed adipocyte-specific genes, including peroxisome proliferator-activated receptor gamma, leptin, adipsin, aP2, adiponectin, GLUT4, and resistin. Adipocytes matured on 3-D constructs secreted leptin at levels even greater than that of fully differentiated adipocytes in 2-D conventional cell cultures. Finally, adipocyte-specific phenotypic function was demonstrated by accumulation of neutral lipids in larger fat droplets. In conclusion, preadipocytes grown on 3-D matrices acquire morphology and biological features of mature adipocytes. This new culture model should have significant utility for in vitro studies of adipocyte cell biology and development.
Polyethylenimine (PEI) and plasmid DNA (pDNA) complexes (PEI/pDNA) are nonviral vectors for gene delivery. The conventional method for producing these complexes involves bulk mixing (BM) of PEI and DNA followed by vortexing which at low N/P ratios results in large particle size distribution, low cytotoxicity, and poor gene transfection, while at high N/P ratios it results in small particle size and better gene transfection but high cytotoxicity. To improve size control, gene transfection efficiency, and cytotoxicity, in this study, we used a microfluidic hydrodynamic focusing (MF) device to prepare PEI/pDNA complexes at N/P = 3.3 and 6.7. We used bulk mixing as control, mouse NIH 3T3 fibroblast cells and mouse embryonic stem (mES) cells as model cell lines, plasmid encoding green fluorescent protein (pGFP) and secreted alkaline phosphatase (pSEAP) as the reporter gene, and commercially available Lipofectamine 2,000 as a positive control. The complexes were characterized by atomic force microscopy (AFM), dynamic light scattering (DLS), and zeta potential (zeta) measurement. Confocal laser scanning microscopy (CLSM) and fluorescent labeling techniques were used to visualize the complex size distribution, complexation uniformity, and cellular distribution. The results showed that MF produced complexes were smaller and more uniformly complexed and had higher cell viability and improved exogenous gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.