In this study we simultaneously collected ultrasound images, EMG, MMG from the rectus femoris (RF) muscle and torque signal from the leg extensor muscle group of nine male subjects (mean±SD, age=30.7±.4.9 years; body weight=67.0±8.4kg; height=170.4±6.9cm) during step, ramp increasing, and decreasing at three different rates (50%, 25% and 17% MVC/s). The muscle architectural parameters extracted from ultrasound imaging, which reflect muscle contractions, were defined as sonomyography (SMG) in this study. The cross-sectional area (CSA) and aspect ratio between muscle width and thickness (width/thickness) were extracted from ultrasound images. The results showed that the CSA of RF muscles decreased by 7.25±4.07% when muscle torque output changed from 0% to 90% MVC, and the aspect ratio decreased by 41.66±7.96%. The muscle contraction level and SMG data were strongly correlated (R(2)=0.961, P=0.003, for CSA and R(2)=0.999, P<0.001, for width/thickness ratio). The data indicated a significant difference (P<0.05) in percentage changes for CSA and aspect ratio among step, ramp increasing, and decreasing contractions. The normalized EMG RMS in ramp increasing was 8.25±4.00% higher than step (P=0.002). The normalized MMG RMS of step contraction was significantly lower than ramp increasing and decreasing, with averaged differences of 12.22±3.37% (P=0.001) and 12.06±3.37% (P=0.001), respectively. The results of this study demonstrated that the CSA and aspect ratio, i.e., SMG signals, can provide useful information about muscle contractions. They may therefore complement EMG and MMG for studying muscle activation strategies under different conditions.
Glioblastoma (GBM) is one of the most fatal central nervous system tumors and lacks effective or sufficient therapies. Ferroptosis is a newly discovered method of programmed cell death and opens a new direction for GBM treatment. However, poor blood–brain barrier (BBB) penetration, reduced tumor targeting ability, and potential compensatory mechanisms hinder the effectiveness of ferroptosis agents during GBM treatment. Here, a novel composite therapeutic platform combining the magnetic targeting features and drug delivery properties of magnetic nanoparticles with the BBB penetration abilities and siRNA encapsulation properties of engineered exosomes for GBM therapy is presented. This platform can be enriched in the brain under local magnetic localization and angiopep‐2 peptide‐modified engineered exosomes can trigger transcytosis, allowing the particles to cross the BBB and target GBM cells by recognizing the LRP‐1 receptor. Synergistic ferroptosis therapy of GBM is achieved by the combined triple actions of the disintegration of dihydroorotate dehydrogenase and the glutathione peroxidase 4 ferroptosis defense axis with Fe3O4 nanoparticle‐mediated Fe2+ release. Thus, the present findings show that this system can serve as a promising platform for the treatment of glioblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.