Background. The enhanced recovery after surgery (ERAS) program is aimed to shorten patients’ recovery process and improve clinical outcomes. This study aimed to compare the outcomes between the ERAS program and the traditional pathway among patients with ankle fracture and distal radius fracture. Methods. This is a multicenter prospective clinical controlled study consisting of 323 consecutive adults with ankle fracture from 12 centers and 323 consecutive adults with distal radial fracture from 13 centers scheduled for open reduction and internal fixation between January 2017 and December 2018. According to the perioperative protocol, patients were divided into two groups: the ERAS group and the traditional group. The primary outcome was the patients’ satisfaction of the whole treatment on discharge and at 6 months postoperatively. The secondary outcomes include delapsed time between admission and surgery, length of hospital stay, postoperative complications, functional score, and the MOS item short form health survey-36. Results. Data describing 772 patients with ankle fracture and 658 patients with distal radius fracture were collected, of which 323 patients with ankle fracture and 323 patients with distal radial fracture were included for analysis. The patients in the ERAS group showed higher satisfaction levels on discharge and at 6 months postoperatively than in the traditional group ( P < 0.001 ). In the subgroup analysis, patients with distal radial fracture in the ERAS group were more satisfied with the treatment ( P = 0.001 ). Furthermore, patients with ankle fracture had less time in bed ( P < 0.001 ) and shorter hospital stay ( P < 0.001 ) and patients with distal radial fracture received surgery quickly after being admitted into the ward in the ERAS group than in the traditional group ( P = 0.001 ). Conclusions. Perioperative protocol based on the ERAS program was associated with high satisfaction levels, less time in bed, and short hospital stay without increased complication rate and decreased functional outcomes.
The daily life of people in the intelligent age is inseparable from electronic device, and a number of bacteria on touch screens are increasingly threatening the health of users. Herein, a photocatalytic TiO 2 /Ag thin film was synthesized on a glass by atomic layer deposition and subsequent in situ reduction. Ultraviolet–visible (UV-Vis) spectra showed that this film can harvest the simulated solar light more efficiently than that of pristine TiO 2 . The antibacterial tests in vitro showed that the antibacterial efficiency of the TiO 2 /Ag film against S. aureus and E. coli was 98.2% and 98.6%, under visible light irradiation for 5 min. The underlying mechanism was that the in-situ reduction of Ag on the surface of TiO 2 reduced the bandgap of TiO 2 from 3.44 to 2.61 eV due to the formation of Schottky heterojunction at the interface between TiO 2 and Ag. Thus, TiO 2 /Ag can generate more reactive oxygen species for bacterial inactivation on the surface of electronic screens. More importantly, the TiO 2 /Ag film had great biocompatibility with/without light irradiation. The platform not only provides a more convenient choice for the traditional antibacterial mode but also has limitless possibilities for application in the field of billions of touch screens. Graphical abstract
Objective. Mitochondrial dysfunction plays an important role in intervertebral disc degeneration (IDD). We aim to explore the pathways and key genes that cause mitochondrial dysfunction during IDD and to further reveal the pathogenesis of IDD based on bioinformatic analyses. Methods. Datasets GSE70362 and GSE124272 were downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) of mitochondrial dysfunction between IDD patients and healthy controls were screened by package limma package. Critical genes were identified by adopting gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathways, and protein-protein interaction (PPI) networks. We collected both degenerated and normal disc tissues obtained surgically, and we performed western blot and qPCR to verify the key DEGs identified in intervertebral disc tissues. Results. In total, 40 cases of IDD and 24 healthy controls were included. We identified 152 DEGs, including 67 upregulated genes and 85 downregulated genes. Four genes related to mitochondrial dysfunction (SOX9, FLVCR1, NR5A1 and UCHL1) were screened out. Of them, SOX9, FLVCR1, and UCHL1 were down-regulated in peripheral blood and intervertebral disc tissues of IDD patients, while NR5A1 was up-regulated. The analysis of immune infiltration showed the concentrations of mast cells activated were significantly the highest in IDD patients. Compared with the control group, the level of T cells CD4 memory resting was the lowest in the patients. In addition, 24 cases of IDD tissues and 12 cases of normal disc tissues were obtained to verify the results of bioinformatics analysis. Both western blot and qPCR results were consistent with the results of bioinformatics analysis. Conclusion. We identified four genes (SOX9, FLVCR1, NR5A1 and UCHL1) associated with mitochondrial dysfunction that play an important role in the progress of disc degeneration. The identification of these differential genes may provide new insights for the diagnosis and treatment of IDD.
Background Long-term fasting for elective surgery has been proven unnecessary based on established guidelines. Instead, preoperative carbohydrate loading 2 h before surgery and recommencing oral nutrition intake as soon as possible after surgery is recommended. This study was performed to analyze the compliance with and effect of abbreviated perioperative fasting management in patients undergoing surgical repair of fresh fractures based on current guidelines. Methods Patients with fresh fractures were retrospectively analyzed from the prospectively collected database about perioperative managements based on enhanced recovery of surgery (ERAS) from May 2019 to July 2019 at our hospital. A carbohydrate-enriched beverage was recommended up to 2 h before surgery for all surgical patients except those with contraindications. Postoperatively, oral clear liquids were allowed once the patients had regained full consciousness, and solid food was allowed 1 to 2 h later according to the patients’ willingness. The perioperative fasting time was recorded and the patients’ subjective comfort with respect to thirst and hunger was assessed using an interview-assisted questionnaire. Results In total, 306 patients were enrolled in this study. The compliance rate of preoperative carbohydrate loading was 71.6%, and 93.5% of patients began ingestion of oral liquids within 2 h after surgery. The median (interquartile range) preoperative fasting time for liquids and solids was 8 (5.2–12.9) and 19 (15.7–22) hours, respectively. The median postoperative fasting time for liquids and solids was 1 (0.5–1.9) and 2.8 (2.2–3.5) hours, respectively. A total of 70.3% and 74.2% of patients reported no thirst and hunger during the perioperative period, respectively. Logistic regression analysis showed that the preoperative fasting time for liquids was an independent risk factor for perioperative hunger. No risk factor was identified for perioperative thirst. No adverse events such as aspiration pneumonia or gastroesophageal reflux were observed. Conclusions In this study of a real clinical practice setting, abbreviated perioperative fasting management was carried out with high compliance in patients with fresh fractures. The preoperative fasting time should be further shortened to further improve patients’ subjective comfort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.