Walking on the water surface is a dream of humans, but it is exactly the way of life for some aquatic insects. In this study, a bionic aquatic microrobot capable of walking on the water surface like a water strider was reported. The novel water strider-like robot consisted of ten superhydrophobic supporting legs, two miniature dc motors, and two actuating legs. The microrobot could not only stand effortlessly but also walk and turn freely on the water surface, exhibiting an interesting motion characteristic. A numerical model describing the interface between the partially submerged leg and the air-water surface was established to fully understand the mechanism for the large supporting force of the leg. It was revealed that the radius and water contact angle of the legs significantly affect the supporting force. Because of its high speed, agility, low cost, and easy fabrication, this microrobot might have a potential application in water quality surveillance, water pollution monitoring, and so on.
This study reported for the first time a novel microrobot that could continuously jump on the water surface without sinking, imitating the excellent aquatic locomotive behaviors of a water strider. The robot consisted of three supporting legs and two actuating legs made from superhydrophobic nickel foam and a driving system that included a miniature direct-current motor and a reduction gear unit. In spite of weighing 11 g, the microrobot jumped 14 cm high and 35 cm long at each leap. In order to better understand the jumping mechanism on the water surface, the variation of forces exerted on the supporting legs was carefully analyzed and calculated based on numerical models and computational simulations. Results demonstrated that superhydrophobicity was crucial for increasing the upward force of the supporting legs and reducing the energy consumption in the process of jumping. Although bionic microrobots mimicking the horizontal skating motions of aquatic insects have been fabricated in the past years, few studies reported a miniature robot capable of continuously jumping on the water surface as agile as a real water strider. Therefore, the present finding not only offers a possibility for vividly imitating and better understanding the amazing water-jumping capability of aquatic insects but also extends the application of porous and superhydrophobic materials to advanced robotic systems.
Soft robot has become a hot topic recently due to its distinct advantages over traditional rigid robots such as high deformability and good impact resistance. However, the coupled deflections of flexile materials bring challenges to soft robotic research in many aspects such as kinematic modeling, dynamic analysis, and control. Besides, unwanted deformations might enlarge external dimensions of soft robots, causing a reduction in the efficiency and bringing about unexpected or harmful contacts with surrounding environments that will significantly affect the robots' performance. In this study, we propose a new inflatable soft actuator driven by two spiral chambers twined with fibers for the first time. A key feature of this actuator is that it possesses a pure and high-efficient torsional motion with no bending and extension movements when works without load, which reduces the difficulties of theoretical analysis and control to some extent. Kinematic model is established by combining virtual work principle and elastic strain energy function for nonlinear flexible materials. The new soft torsional actuator module is carefully designed and fabricated, of which both the kinematic property and output torque are investigated experimentally. Results show that the module exhibits good linearity with air pressure ranging from 35 to 100 kPa, and can provide a torsion angle of up to 110° with an angular displacement accuracy of ±2° in empty loaded conditions; the maximum output torque reaches 0.026 N·m with the corresponding air pressure of 100 kPa. Finally, three soft robots are assembled by utilizing this new, inflatable, pure, soft torsional actuator, and successfully carry out different manipulating tasks. This work might provide some insights into the design of linear soft actuators without coupled deformations in future.
The highly efficient and agile water-surface locomotion of water striders has attracted substantial research attention. Compared with imitating the horizontal rowing motion, imitating the jumping capability of water striders is much more challenging because the strong interaction in the jumping process easily causes the robot to sink. This study focuses on designing a miniature robot capable of continuously jumping on the water surface. A spring-based actuating mechanism is proposed to produce a large jumping force. The center of gravity of the robot is carefully designed to allow the robot to jump on the surface continuously and smoothly. The influences of several critical factors, including the area of the supporting legs, the spring stiffness, the jumping angle, etc on jumping ability are analyzed by means of dynamic simulation and experiments. The jumping performance under different jumping angles is tested. The fabricated robot weighs approximately 10.2 g and can continuously jump on water with a maximum leap height and length of 120 and 410 mm, respectively. This study helps researchers understand the jumping mechanism of water striders and provides a reference for developing water-jumping robots that can perform various aquatic tasks in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.