Ternary heterostructured nanofibers (NFs) consisting of plasmonic noble metal nanoparticles (Au, Ag, or Pt NPs), graphitic carbon nitride nanosheets (g-C3N4 NSs), and TiO2 NPs were synthesized in situ via a facile electrospinning technique combined with a subsequent thermal oxidation/reduction process. The thermal-reduced plasmonic NPs with sizes from 5 to 10 nm are dispersed uniformly into the heterojunctions of the NFs that are formed by thermal oxidation etching of exfoliated g-C3N4 NSs in the electrospun TiO2 nanofibrous matrix, as evidenced by microscopic and electronic structure analyses. In comparison to single-component photocatalysts, such as g-C3N4 NSs or TiO2 NFs, these ternary heterostructures exhibit significantly high photocatalytic activity for H2 evolution under simulated sunlight irradiation. The enhanced photoactivities are attributed to the strong photosynergistic effect between the surface plasmon resonance (SPR) and the heterojunction interface sensitization, which results in the improvement of charge-carrier generation and separation in the ternary heterostructured NFs. Further investigations indicate that coupling heterojunction sensitization on the g-C3N4/TiO2 interface with Ag SPR effects by plasmonic resonant energy transfer is the optimal strategy for synergistically improving the charge-carrier kinetics to achieve highly efficient photocatalytic H2 evolution. It is believed that our present study offers a promising method for the rational integration of multi-component photocatalytic systems that can realize high photocatalytic performances for use in solar-to-fuel conversion.
Critical limb ischemia (CLI) is the most severe clinical manifestation of peripheral arterial disease, which causes many amputations and deaths. Conventional treatment strategies for CLI (e.g., stent implantation and vascular surgery) bring surgical risk, which are not suitable for each patient. Extracellular vesicles (EVs) can be a potential solution for CLI. Herein, vascular endothelial growth factor (VEGF; i.e., a crucial molecule related to angiogenesis) and transcription factor EB (TFEB; i.e., a pivotal regulator of autophagy) are chosen as the target gene to improve the bioactivity of EVs derived from endothelial cells. The VEGF/TFEB-engineered EVs (Engineered-EVs) are fabricated by genetically engineering the parent cells, and their versatile functions are confirmed using three cell models (human umbilical vein endothelial cells, myoblast, and monocytes). Injectable thermal-responsive hydrogel are then combined with Engineered-EVs to combat CLI. These results reveal that the hydrogel can enhance the stability of Engineered-EVs in vivo and release EVs at different temperatures. Moreover, the results of animal studies indicate that Engineered-EV/Hydrogel can significantly improve neovascularization, attenuate muscle injury, and recover limb function after CLI. Finally, mechanistic studies shed light on the therapeutic effect of Engineered-EV/Hydrogel due to the activated VEGF/VEGFR pathway and autophagy-lysosomal pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.