Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Footmounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.
In order to enhance the tracking performance of global positioning system (GPS) receivers for weak signal applications under high-dynamic conditions, a high-sensitivity and high-dynamic carrier-tracking loop is designed. The high-dynamic performance is achieved by aiding from a strapdown inertial navigation system (SINS). In weak signal conditions, a dynamic-division fast Fourier transform (FFT)-based tracking algorithm is proposed to improve the sensitivity of GPS receivers. To achieve the best performance, the tracking loop is designed to run either in the conventional SINS-aided phase lock loop mode (time domain) or in the frequency-domain-tracking mode according to the carrier-to-noise spectral density ratio detected in real time. In the frequency-domaintracking mode, the proposed dynamic-division FFT algorithm is utilized to estimate and correct the error of the SINS aiding. Furthermore, the optimal values of the dynamic-division step and the FFT size are selected to maximize the signal-to-noise ratio gain. Simulation results demonstrate that the designed loop can significantly improve the tracking sensitivity and robustness for weak GPS signals without compromising the dynamic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.