Multidrug resistance (MDR) and disease relapse are challenging clinical problems in the treatment of leukaemia. Relapsed disease is frequently refractory to chemotherapy and exhibits multiple drug resistance. Therefore, it is important to identify the mechanism by which cancer cells develop resistance. In this study, we used microRNA (miRNA) microarray and qRT-PCR approaches to investigate the expression of miRNAs in three leukaemia cell lines with different degrees of resistance to doxorubicin (DOX) compared with their parent cell line, K562. The expression of miR-331–5p and miR-27a was inversely correlated with the expression of a drug-resistant factor, P-glycoprotein (P-gp), in leukaemia cell lines with gradually increasing resistance. The development of drug resistance is regulated by the expression of the P-gp. Transfection of the K562 and, a human promyelocytic cell line (HL) HL60 DOX-resistant cells with miR-331–5p and miR-27a, separately or in combination, resulted in the increased sensitivity of cells to DOX, suggesting that correction of altered expression of miRNAs may be used for therapeutic strategies to overcome leukaemia cell resistance. Importantly, miR-331–5p and miR-27a were also expressed at lower levels in a panel of relapse patients compared with primary patients at diagnosis, further illustrating that leukaemia relapse might be a consequence of deregulation of miR-331–5p and miR-27a.
BackgroundAlthough current chemotherapy regimens have remarkably improved the cure rate of pediatric acute promyelocytic leukemia (APL) over the past decade, more than 20% of patients still die of the disease, and the 5-year cumulative incidence of relapse is 17%. The precise gene pathways that exert critical control over the determination of cell lineage fate during the development of pediatric APL remain unclear.MethodsIn this study, we analyzed miR-125b expression in 169 pediatric acute myelogenous leukemia (AML) samples including 76 APL samples before therapy and 38 APL samples after therapy. The effects of enforced expression of miR-125b were evaluated in leukemic cell and drug-resistant cell lines.ResultsmiR-125b is highly expressed in pediatric APL compared with other subtypes of AML and is correlated with treatment response, as well as relapse of pediatric APL. Our results further demonstrated that miR-125b could promote leukemic cell proliferation and inhibit cell apoptosis by regulating the expression of tumor suppressor BCL2-antagonist/killer 1 (Bak1). Remarkably, miR-125b was also found to be up-regulated in leukemic drug-resistant cells, and transfection of a miR-125b duplex into AML cells can increase their resistance to therapeutic drugs,ConclusionsThese findings strongly indicate that miR-125b plays an important role in the development of pediatric APL at least partially mediated by repressing BAK1 protein expression and could be a potential therapeutic target for treating pediatric APL failure.
Camptothecin (CPT) is an effective chemotherapeutic agent for treatment of patients with cancer. The mechanisms underlying CPT-mediated responses in cancer cells are not fully understood. MicroRNA (miRNA) play important roles in tumorigenesis and drug sensitivity. However, the interaction between camptothecin and miRNA has not been previously explored. In this study, we verified that miR-125b was down-regulated in CPTinduced apoptosis in cancer cells and that ectopic expression of miR-125b partially restored cell viability and inhibited cell apoptosis that was induced by CPT. In addition, we demonstrated that CPT induced apoptosis in cancer cells by miR125b-mediated mitochondrial pathways via targeting to the 3Ј-untranslated (UTR) regions of Bak1, Mcl1, and p53. A significant increase in Bak1, Mcl1, and p53 protein levels was detected in response to the treatments of CPT. It is noteworthy that the expression levels of Bak1, Mcl1, and p53 increased in a time-dependent manner and negatively correlated with miR125b expression. It is noteworthy that we revealed that miR125b directly targeted the 3ЈUTR regions of multiple genes in a CPT-induced mitochondrial pathway. In addition, most targets of miR-125b were proapoptotic genes, whereas some of the targets were antiapoptotic genes. We hypothesized that miR125b may mediate the activity of chemotherapeutic agents to induce apoptosis by regulating multiple targets. This is the first report to show that camptothecin induces cancer cell apoptosis via miRNA-mediated mitochondrial pathways. The results suggest that suppression of miR-125b may be a novel approach for the treatment of cancer.
Background:The mechanisms account for the miR-125b dysregulation in cancer cells. Results: miR-125b, activating by CDX2, a homeobox transcription factor, regulates cell differentiation through repression of the core binding factor. Conclusion: This study revealed a novel regulatory pathway including transcription factors and miRNA in the pathogenesis of hematopoietic malignancies. Significance: The results potentially provide the knowledge necessary to design novel targeted therapies against the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.