We report the WIMP dark matter search results using the first physics-run data of the PandaX-II 500 kg liquid xenon dual-phase time-projection chamber, operating at the China JinPing underground Laboratory. No dark matter candidate is identified above background. In combination with the data set during the commissioning run, with a total exposure of 3.3×10 4 kg-day, the most stringent limit to the spin-independent interaction between the ordinary and WIMP dark matter is set for a range of dark matter mass between 5 and 1000 GeV/c 2 . The best upper limit on the scattering cross section is found 2.5 × 10 −46 cm 2 for the WIMP mass 40 GeV/c 2 at 90% confidence level.Weakly interacting massive particles, WIMPs in short, are a class of hypothetical particles that came into existence shortly after the Big Bang. The WIMPs could naturally explain the astronomical and cosmological evidences of dark matter in the Universe. The weak interactions between WIMPs and ordinary matter could lead to the recoils of atomic nuclei that produce detectable signals in deep-underground direct detection experiments. Over the past decade, the dual-phase xenon time-projection chambers (TPC) emerged as a powerful technology for WIMP searches both in scaling up the target mass, as well as in improving background rejection [1][2][3]. LUX, a dark matter search experiment with a 250 kg liquid xenon target, has recently reported the best limit of 6×10 −46 cm 2 on the WIMP-nucleon scattering cross section [4] The PandaX-II experiment, a half-ton scale dual-phase xenon experiment at the China JinPing underground Laboratory (CJPL), has recently reported the dark matter search results from its commissioning run (Run 8,19.1 live days) with a 5845 kg-day exposure [5]. The data were contaminated with significant 85 Kr background. After a krypton distillation campaign in early 2016, PandaX-II commenced physics data taking in March 2016. In this paper, we report the combined WIMP search results using the data from the first physics run from March 9 to June 30, 2016 (Run 9, 79.6 live days) and Run 8, with a total of 3.3×10 4 kg-day exposure, the largest reported WIMP data set among dual-phase xenon detectors in the world to date.The PandaX-II detector has been described in detail in Ref. [5]. The liquid xenon target consists of a cylindrical TPC with dodecagonal cross section (opposite-side distance 646 mm), confined by the polytetrafluoroethylene (PTFE) reflective wall, and a vertical drift distance of 600 mm defined by the cathode mesh and gate grid located at the bottom and top. For each physical event, the prompt scintillation photons (S1) and the delayed electroluminescence photons (S2) from the ionized electrons are collected by two arrays of 55 Hamamatsu R11410-arXiv:1607.07400v3 [hep-ex] Hamamatsu R8520-406 1-inch PMTs serving as an active veto. The γ background, which produces electron recoil (ER) events, can be distinguished from the dark matter nuclear recoil (NR) using the S2-to-S1 ratio. During the data taking period in Run 9, a few diffe...
Background Circular RNAs (circRNAs) are a novel type of noncoding RNAs and play important roles in tumorigenesis, including gastric cancer (GC). However, the functions of most circRNAs remain poorly understood. In our study, we aimed to investigate the functions of a new circRNA circ-DONSON in GC progression. Methods The expression of circ-DONSON in gastric cancer tissues and adjacent normal tissues was analyzed by bioinformatics method, qRT-PCR, Northern blotting and in situ hybridization (ISH). The effects of circ-DONSON on GC cell proliferation, apoptosis, migration and invasion were measured by using CCK8, colony formation, EdU, immunofluorescence (IF), FACS and Transwell assays. qRT-PCR and Western blotting were utilized to validate how circ-DONSON regulates SOX4 expression. ChIP, DNA fluorescence in situ hybridization (DNA-FISH) and DNA accessibility assays were used to investigate how circ-DONSON regulates SOX4 transcription. The interaction between circ-DONSON and NURF complex was evaluated by mass spectrum, RNA immunoprecipitation (RIP), pulldown and EMSA assays. Xenograft mouse model was used to analyze the effect of circ-DONSON on GC growth in vivo. Results Elevated expression of circ-DONSON was observed in GC tissues and positively associated with advanced TNM stage and unfavorable prognosis. Silencing of circ-DONSON significantly suppressed the proliferation, migration and invasion of GC cells while promoting apoptosis. circ-DONSON was localized in the nucleus, recruited the NURF complex to SOX4 promoter and initiated its transcription. Silencing of the NURF complex subunit SNF2L, BPTF or RBBP4 similarly attenuated GC cell growth and increased apoptosis. circ-DONSON knockdown inhibited GC growth in vivo. Conclusion circ-DONSON promotes GC progression through recruiting the NURF complex to initiate SOX4 expression. Electronic supplementary material The online version of this article (10.1186/s12943-019-1006-2) contains supplementary material, which is available to authorized users.
We present the results of a search for WIMPs from the commissioning run of the PandaX-II experiment located at the China Jinping underground Laboratory. A WIMP search data set with an exposure of 306×19.1 kg-day was taken, while its dominant 85 Kr background was used as the electron recoil calibration. No WIMP candidates are identified, and a 90% upper limit is set on the spin-independent elastic WIMP-nucleon cross section with a lowest excluded cross section of 2.97×10 −45 cm 2 at a WIMP mass of 44.7 GeV/c 2 .PACS numbers: 95.35.+d, 29.40.-n, 95.55.Vj
We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination.
Levulinic acid (LA) is one of the most significant cellulose-derived compounds.γ-Valerolactone (GVL) and 1,4-Pentanediol (1,4-PDO) are considered to be the important chemical intermediates. Direct conversion of LA to GVL and GVL to 1,4-PDO were achieved via chemoselective hydrogenation by supported copper catalysts. We studied the transformation of LA to GVL in water and alcohol, and the pathway of the reaction was also studied. LA was converted to GVL catalyzed by Cu(30%)-WO 3 (10%)/ZrO 2 -CP-300 catalyst at 413 K in ethanol with 81% yield, while 84% GVL was obtained with Cu(30%)/ZrO 2 -OG-300 catalyst in water at 393 K. Furthermore, 1,4-PDO was produced from GVL in excellent selectivities (>90%) using Cu-TiO 2 /ZrO 2 -CP-600 catalyst. Scheme 1. The pathway of the conversion of LA to GVL, PDO and MTHF.Horváth et al. reported a multi-step process for the transformation of LA to GVL, PDO and MTHF by homogeneous
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.