A new chemical labeling-based LC-MS/MS approach was developed for quantitative profiling of nine canonical bases and deoxynucleosides (dNs) in natural products. Using 2-bromo-1-(4-dimethylamino-phenyl)-ethaone (BrDPE) as the tagging reagent, a previously unexploited N-alkylpyrimidine derivative (Nad) was created for one-pot labeling of widescope nucleobases via a flexible bromophilic substitution under mild conditions. The derivatization notably improved the LC-MS detection sensitivity by 31−107 fold, enabling a fast dilute-and-shoot analysis of highly diluted samples. The optimized and validated method demonstrated satisfactory accuracy (87−107%), precision (RSDs < 7.5%), and recovery (89−105%) for matrix-matched standard addition. The method was applied to simultaneously determine all target analytes and four uncanonical analogues and base-modified species in seven traditional health foods, which differ in contents by up to 600-fold for discrimination among samples. Further, the base-labeled Nads exhibit a unique fragmentation signature that could be used for untargeted screening of nucleobase-containing metabolites by simplified LC-MS/MS workflow to improve quality evaluation of natural medicinal products.
Pirin is a nonheme metalloprotein that occurs widely in human tissues and is highly conserved across all taxa. Pirin proteins typically function as nuclear transcription regulators, but two Pirin orthologs, YhhW (from Escherichia coli) and hPirin (from humans) were revealed to possess enzymatic activity of degrading quercetin. The exact role of Pirin homologues and their catalytic specificity remain poorly understood. In this work, by screening against a panel of plant flavonoids, we found that both Pirins catalyze the oxidative degradation of a wide spectrum of flavonol analogues and release carbon monoxide (CO) in the process. This shows that Pirin acts on a broad range of substrates and could represent a novel dietary source of CO in vivo. Although the kinetic profiles differ substantially between two Pirins, the identified substrate structures all share a 2,3-double bond and 3-hydroxyl and 4-oxo groups on their "flavonol backbone," which contribute to the specific enzyme−substrate interaction. While hPirin is iron-dependent, YhhW is identified as a novel nickelcontaining dioxygenase member of the bicupin family. Besides the expanded Pirin activity, we present the crystal structures of the native Ni-YhhW and tag-free Fe-hPirin, revealing the distinctive differences occurring at the metal-binding site. In addition, YhhW features a flexible Ω-loop near the catalytic cavity, which may help stabilize the reaction intermediates via a Ni-flavonol complex. The structure-dependent modulation of substrate binding to the catalytic cavity adds to understanding the differential dispositions of natural flavonols by human and bacterial Pirins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.