Porcine reproductive and respiratory syndrome virus (PRRSV), the most economically important infectious disease of pigs, elicits poor innate and adaptive immune responses. Soluble CD83 (sCD83), a secretion from various immune cell populations, especially MoDCs, is involved in negatively regulating the immune response. We speculate sCD83 may be a critical factor in the process of PRRSV-coordinated macrophage polarization. In this study, we found that PAMs co-cultured with PRRSV-infected MoDCs inhibited the M1 macrophage while enhancing the M2 macrophage. This was accompanied by a decrease in the pro-inflammatory cytokine TNF-α and iNOS and an increase in the anti-inflammatory cytokine IL-10 and Arg1. Meanwhile, sCD83 incubation causes the same specific effects lead to a switch in macrophage from M1 to M2. Neutralization of sCD83 removes the inhibitory effects of PRRSV on PAMs. Using reverse genetics, we generated recombinant PRRSVs with mutations in N protein, nsp1α, and nsp10 (knockout sCD83-concerned key amino acid site). Four mutant viruses lost the suppression of M1 macrophage markers, in contrast to the restriction of the upregulation of M2 macrophage markers. These findings suggest that PRRSV modulates the switch of macrophage polarization from M1 to M2 by upregulating the MoDC-induced secretion of CD83, providing new insights into the mechanism by which PRRSV regulates host immunity.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious and pathogenic agent that causes considerable economic damage in the swine industry. It regulates the inflammatory response, triggers inflammation-induced tissue damage, suppresses the innate immune response, and leads persistent infection. Interleukin-8 (IL-8), a pro-inflammatory chemokine, plays a crucial role in inflammatory response during numerous bacteria and virus infections. However, the underlying mechanisms of IL-8 regulation during PRRSV infection are not well understood. In this study, we demonstrate that PRRSV-infected porcine alveolar macrophages (PAMs) release higher levels of IL-8. We screened the nucleocapsid protein, non-structural protein (nsp) 9, and nsp11 of PRRSV to enhance IL-8 promoter activity via the C/EBPα pathway. Furthermore, we identified that the amino acids Q35A, S36A, R113A, and I115A of the nucleocapsid protein play a crucial role in the induction of IL-8. Through reverse genetics, we generated two mutant viruses (rQ35-2A and rR113A), which showed lower induction of IL-8 in PAMs during infection. This finding uncovers a previously unrecognized role of the PRRSV nucleocapsid protein in modulating IL-8 production and provides insight into an additional mechanism of immune and inflammation modulation by PRRSV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.