Nitrogen hybridization is an attractive way to enhance the wettability and electric conductivity of porous carbon, which increases the capacitance of carbon-based supercapacitor, however, there is lack of low-cost methods to prepare the nitrogen-doped porous carbon materials. Herein, a novel facile nitrogen-containing bio-phenolic resin was synthesized by polymerization of the carbamate bio-oil, Phenol and paraformaldehyde. As a precursor of nitrogen-doped porous carbon, the nitrogen-containing bio-phenol resin was activated by the one-step molten-salt method. The resultant nitrogen-doped porous carbon showed a high specific surface area up to 1401 m2·g−1. As a supercapacitor electrode, the nitrogen-doped porous carbons showed specific capacitance of 159 F·g−1 at 0.5 A·g−1. It also exhibited high cyclic stability with 94.8% retention of the initial specific capacitance over 1000 charge-discharge cycles at 1.0 A·g−1. The results suggest that these nitrogen-containing bio-phenol resin provide a new source of nitrogen-doped porous carbon for high-performance supercapacitor electrodes.
Abstract. Ir(TFA)3 (TFA=1,1,1-trifluoro-2,4-pentanedionate) metal complexes with high purity was successfully synthesized. The metal complexes have been characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy. The volatility of metal complexes was studied by thermogravimetry analysis. And a possible decomposition mechanism was studied by mass spectroscopic analysis method. The novel iridium complexes can be severed as precursor in metalorganic chemical vapor deposition of iridium films. iridium films were deposited by metalorganic chemical vapor deposition method, and the Ir(TFA)3 complex was used as precursor. The iridium thin films were characterized by X-ray diffraction and scanning electron microscopy in order to determine crystallinity and surface morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.