The present quality control method of Chinese medicinal materials (CMM) has obvious deficiency, which cannot be compatible with the multi-target and multi-component characteristics and production process of CMM. Plant metabolomics with a huge impetus to comprehensively characterize the metabolites and clarify the complexity and integrity of CMM, has been widely used in the research of CMM. This article comprehensively reviewed the application of plant metabolomics in the quality control of CMM. It introduced the concept, technique, and application examples, discussed the prospects, limitations, improvements of plant metabolomics. MS and NMR, as important techniques for plant metabolomics, are mainly highlighted in the case references. The purpose of this article is to clarify the advantage of plants metabolomics for promoting the optimization of the CMM quality control system and proposing a system approach to realize the overall quality control of CMM based on plant metabolomics combined with multidisciplinary method.
Schisandra chinensis owes its therapeutic efficacy to the dibenzocyclooctadiene lignans, which are limited to the Schisandraceae family and whose biosynthetic pathway has not been elucidated. Coniferyl alcohol is the synthetic precursor of various types of lignans and can be acetylated to form coniferyl acetate by coniferyl alcohol acyltransferase (CFAT), which belongs to the BAHD acyltransferase family. This catalytic reaction is important because it is the first committed step of the hypothetical biosynthetic pathway in which coniferyl alcohol gives rise to dibenzocyclooctadiene lignans. However, the gene encoding CFAT in S. chinensis has not been identified. In this study, firstly we identified 37 ScBAHD genes from the transcriptome datasets of S. chinensis. According to bioinformatics, phylogenetic, and expression profile analyses, 1 BAHD gene, named ScBAHD1, was cloned from S. chinensis. The heterologous expression in Escherichia coli and in vitro activity assays revealed that the recombinant enzyme of ScBAHD1 exhibits acetyltransferase activity with coniferyl alcohol and some other alcohol substrates by using acetyl-CoA as the acetyl donor, which indicates ScBAHD1 functions as ScCFAT. Subcellular localization analysis showed that ScCFAT is mainly located in the cytoplasm. In addition, we generated a three-dimensional (3D) structure of ScCFAT by homology modeling and explored the conformational interaction between protein and ligands by molecular docking simulations. Overall, this study identified the first enzyme with catalytic activity from the Schisandraceae family and laid foundations for future investigations to complete the biosynthetic pathway of dibenzocyclooctadiene lignans.
Schisandra chinensis fruit is a widely edible and medicinal resource, whose extract had a good inhibitory effect on airway inflammation in asthmatic mice. However, the main active components remain unknown. In this work, we found that PET2, a subfraction of its ethanolic extract petroleum ether, displayed significant anti-inflammatory effects in interleukin (IL)-4/tumor necrosis factor (TNF)-α-stimulated BEAS-2B cells. Meanwhile, in the ovalbumin (OVA)-induced allergic asthma mice model, PET2 (200 and 400 mg/kg) had significant effects on attenuating airway inflammatory cell infiltration and reducing serum Th2-related cytokines. Further studies led to the isolation and identification of 14 compounds, guided by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based rapid characterization of chemical constituents. Combining network pharmacology analysis and in vitro experiments, we found that six compounds from PET2 had good anti-inflammatory properties. The potential mechanism may be involved in Fc epsilon RI, T cell receptor, and Jak-STAT signaling pathways. This study clarified the anti-inflammatory properties of the main active fraction and active compounds of S. chinensis fruit and provided a theoretical basis for its anti-asthma scientific utilization.
The Schisandra chinensis is an important edible plant, and previous phytochemical research focused on the S. chinensis fruit (SF) due to its long history as traditional Chinese medicine. Schisandra chinensis fruit was used as an astringent tonic to astringe the lungs and the kidneys, replenish energy, promote the production of body fluids, tonify the kidney, and induce sedation. The components of S. chinensis, such as its stems (SS), leaves (SL), and roots (SR), have drawn little attention regarding their metabolites and bioactivities. In this study, a strategy of combining a chemical database with the Progenesis QI informatics platform was applied to characterize the metabolites. A total of 332 compounds were tentatively identified, including lignans, triterpenoids, flavonoids, tannins, and other compound classes. Heatmap and principal component analysis (PCA) showed remarkable differences in different parts of the plants. By multiple orthogonal partial least-squares discriminant analyses (OPLS-DA), 76 compounds were identified as potential marker compounds that differentiate these different plant parts. Based on the variable influence on the projection score from OPLS-DA, the active substances including gomisin D, schisandrol B, schisantherin C, kadsuranin, and kadlongilactone F supported the fact that the biological activity of the roots was higher than that of the fruit. These substances can be used as marker compounds in the plant roots, which likely contribute to their antioxidant and anti-inflammatory activities. The plant roots could be a new medicinal source that exhibits better activity than that of traditional medicinal parts, which makes them worth exploring.
Schisandrae Chinensis Fructus which whole fruit have been utilized as a traditional medicine has attracted an increasingly attention as a product for both medical and edible. However, less research has been done on distribution of chemical constituents and relevant bioactivities in pulp and kernel. In this paper, the chemical components in the pulp and kernel of Schisandrae Chinensis Fructus were compared by UPLC‐QTOF‐MS/MS, and 10 lignans with great differences were quantitatively analyzed by HPLC. The antioxidant and hepatoprotective activities of pulp and kernel were compared in corresponding vivo and vitro models. This outcome indicated that the antioxidant and hepatoprotective activity of kernel was the stronger than that of pulp. Suggesting that the antioxidant and hepatoprotective activity of Schisandrae Chinensis Fructus was primarily based on the lignin components which mainly exists in kernel and providing evidence for its extensive uses in the health care system. Practical applications The whole fruit of Schisandra chinensis is a dual‐purpose product for both medical and edible. Understanding the chemical composition and activity differences of kernel and pulp in the fruit is particularly important for the rational utilization of Schisandrae Chinensis Fructus. This study comprehensively explained the differences of chemical constituents and antioxidant activity. In addition, the divergences of hepatoprotective activity between its kernel and pulp were reported for the first time. The information will contribute to the further development and utilization of Schisandrae Chinensis Fructus in health care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.