Glu receptors are known to function as Glu-activated ion channels that mediate mostly excitatory neurotransmission in animals. Glu receptor–like genes have also been reported in higher plants, although their function is largely unknown. We have identified a rice (Oryza sativa) Glu receptor–like gene, designated GLR3.1, in which mutation by T-DNA insertion caused a short-root mutant phenotype. Histology and DNA synthesis analyses revealed that the mutant root meristematic activity is distorted and is accompanied by enhanced programmed cell death. Our results supply genetic evidence that a plant Glu receptor–like gene, rice GLR3.1, is essential for the maintenance of cell division and individual cell survival in the root apical meristem at the early seedling stage.
Gracilariopsis lemaneiformis (aka Gracilaria lemaneiformis) is a red macroalga rich in phycoerythrin, which can capture light efficiently and transfer it to photosystemⅡ. However, little is known about the synthesis of optically active phycoerythrinin in G. lemaneiformis at the molecular level. With the advent of high-throughput sequencing technology, analysis of genetic information for G. lemaneiformis by transcriptome sequencing is an effective means to get a deeper insight into the molecular mechanism of phycoerythrin synthesis. Illumina technology was employed to sequence the transcriptome of two strains of G. lemaneiformis- the wild type and a green-pigmented mutant. We obtained a total of 86915 assembled unigenes as a reference gene set, and 42884 unigenes were annotated in at least one public database. Taking the above transcriptome sequencing as a reference gene set, 4041 differentially expressed genes were screened to analyze and compare the gene expression profiles of the wild type and green mutant. By GO and KEGG pathway analysis, we concluded that three factors, including a reduction in the expression level of apo-phycoerythrin, an increase of chlorophyll light-harvesting complex synthesis, and reduction of phycoerythrobilin by competitive inhibition, caused the reduction of optically active phycoerythrin in the green-pigmented mutant.
Organic phosphates (OP) account for approximately 30–90% of total soil P. However, it is too stable to be utilized by plants as available P source. Aspergillus niger (A. niger) has considerable ability to secret phytase to decompose OP. Meanwhile, mineralization of lead (Pb) is efficient to achieve its remediation. This study hence investigated Pb immobilization by A. niger assisted decomposition of OP under variable acidic environments. A. niger can survive in the acidic environment as low as pH = 1.5. However, alternation of environmental pH within 3.5–6.5 significantly changed fungal phytase secretion. In particular, weakly acidic stimulation (pH of ~5.5) increased phytase activity secreted by A. niger to 0.075 µmol/min/mL, hence elevating P release to a maximal concentration of ~20 mg/L. After Pb addition, ATR-IR and TEM results demonstrated the formation of abundant chloropyromorphite [Pb5(PO4)3Cl] mineral on the surface of mycelium at pH = 5.5. Anglesite, with a higher solubility than pyromorphite, was precipitated massively in other treatments with pH lower or higher than 5.5. This study elucidated the great potential of applying OP for Pb immobilization in contaminated water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.