Currently, wound infection is an important health problem for the public. Wound infection can not only hinder healing but it can also lead to serious complications. Injectable wound dressings with biocompatible and antibacterial properties can promote wound healing during skin infections and reduce antibiotic use. Here, we used glycidyl methacrylate (GMA) to modify ε-polylysine (ε-PL) and γ-poly(glutamic acid) (γ-PGA) to produce ε-polylysine-glycidyl methacrylate (ε-PL-GMA) and γ-poly(glutamic acid)-glycidyl methacrylate (γ-PGA-GMA). Subsequently, ε-PL-GMAand γ-PGA-GMA-based hydrogels were developed through photopolymerization using visible light. The hydrogels were injectable, could rapidly gelatinize, were biocompatible, and showed a wide spectrum of antibacterial activity. The hydrogels also promoted wound healing. The results show that these hydrogels inhibit bacterial infection and shorten the wound healing time of skin defects in Staphylococcus aureus models. This demonstrates that the hydrogels hold potential for clinical antimicrobial and wound healing therapy.
Burn wound infections cause serious problems for public health. More than 180,000 patients die from burns every year worldwide. In addition, the difficulty of healing wounds and wound infections caused by burns affects the mental health of patients. Therefore, it is very important to develop a wound dressing that can promote wound repair and exhibits good antibacterial effects. Here, we used oxidized konjac glucomannan (OKGM), γ-poly(glutamic acid) modified with dopamine and L-cysteine (γ-PGA-DA-Cys) and ε-polylysine (ε-PL) to produce an OKGM/γ-PGA-DA-Cys/ε-PL (OKPP) hydrogel. This hydrogel was produced by thiol-aldehyde addition and Schiff-base reactions and has the ability to be injected and self-heal. The results showed that the hydrogel exhibits good antibacterial effects on Pseudomonas aeruginosa and Staphylococcus aureus and has antioxidant effects in vitro. Moreover, the hydrogel also exhibits good adhesion. In a burn wound infection model, the hydrogel promoted wound healing and reduced the production of inflammation. These results proved that the hydrogel has clinical potential as a wound dressing for burn wound infection.
Poly(methyl methacrylate) (PMMA) resin is widely used as a prosthetic and restorative biomaterial, such as in bone cement, denture base resin, etc. The flexural and compressive strength of a PMMA resin is of great concern and many approaches have been made to improve the flexural resistance and compressive strength of PMMA. To strengthen PMMA via high-performance (HP) fibers is a feasible way; however, the HP fibers are not very satisfactory in practice, with a complex handling process and esthetic concerns. The aim of this study is to investigate the preparation of a novel botryoidal PMMA microsphere-grafted aramid fiber system, which has never been reported before, and the flexural and compression behavior of the PMMA/aramid composite, and evaluate the cytotoxic effects of the PMMA/aramid composite. As a result, the addition of a microsphere-grafted aramid fiber to an acrylic resin, with the esthetic problem of the aramid fiber minimized, simultaneously improves the mechanical properties and the safety of the PMMA/aramid composite in vitro is proven acceptable, suggesting that the novel composite has great potential in the field of restorative materials in clinical applications where high mechanical properties are required such as hard tissue repairing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.