Bacterial infection can cause chronic nonhealing wounds, which may be a great threat to public health. It is highly desirable to develop an injectable wound dressing hydrogel with multifunctions including self‐healing, remodeling, antibacterial, radical scavenging ability, and excellent photothermal properties to promote the regeneration of damaged tissues in clinical practice. In this work, dopamine‐modified gelatin (Gel‐DA) is employed for the first time as a biotemplate for enhancing the biomineralization ability of gelatin to synthesize dopamine‐modified gelatin@Ag nanoparticles (Gel‐DA@Ag NPs). Further, the prepared Gel‐DA@Ag NPs with antioxidant activity and near‐infrared (NIR) laser irradiation synergistic antibacterial behavior are fixed in the guar gum based hydrogels through the formation of borate/didiol bonds to possess remolding, injectable, and self‐healing performance. In addition, the multifunctional hydrogels can completely cover the irregular wound shape to prevent secondary injury. More importantly, these hydrogel platforms under NIR can significantly accelerate wound healing with more skin appendages like hair follicles and blood vessels appearing. Therefore, it is expected that these hydrogels can serve as competitive multifunctional dressings in biomedical field, including bacteria‐derived wound infection and other tissue repair related to reactive oxygen species overexpression.
Studying numerous biologically important species simultaneously is crucial to understanding cellular functions and the root causes of related diseases.D irect visualization of endogenous biothiols in biological systems is of great value to understanding their biological roles.H erein, an ovel multisignal fluorescent probe was rationally designed and exploited for the simultaneous sensing of homocysteine (Hcy), cysteine (Cys), and glutathione (GSH) using different emission channels.T his probe was successfully applied to the simultaneous discrimination between and visualization of endogenous Hcy, Cys,GSH, and their transformation in living cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.