Continuing population growth will result in increasing global demand for food and fiber for the foreseeable future. During the growing season, variability in the height of crops provides important information on plant health, growth, and response to environmental effects. This paper indicates the feasibility of using structure from motion (SfM) on images collected from 120 m above ground level (AGL) with a fixed-wing unmanned aerial vehicle (UAV) to estimate sorghum plant height with reasonable accuracy on a relatively large farm field. Correlations between UAV-based estimates and ground truth were strong on all dates (R2 > 0.80) but are clearly better on some dates than others. Furthermore, a new method for improving UAV-based plant height estimates with multi-level ground control points (GCPs) was found to lower the root mean square error (RMSE) by about 20%. These results indicate that GCP-based height calibration has a potential for future application where accuracy is particularly important. Lastly, the image blur appeared to have a significant impact on the accuracy of plant height estimation. A strong correlation (R2 = 0.85) was observed between image quality and plant height RMSE and the influence of wind was a challenge in obtaining high-quality plant height data. A strong relationship (R2 = 0.99) existed between wind speed and image blurriness.
In order to create an irrigation scheduling plan for use in large-area citrus orchards, an environmental information collection system of citrus orchards was established based on the Internet of Things (IoT). With the environmental information data, deep bidirectional long short-term memory (Bid-LSTM) networks are proposed to improve soil moisture (SM) and soil electrical conductivity (SEC) predictions, providing a meaningful reference for the irrigation and fertilization of citrus orchards. The IoT system contains SM, SEC, air temperature and humidity, wind speed, and precipitation sensors, while the mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) were calculated to evaluate the performance of the models. The performance of the deep Bid-LSTM model was compared with a multi-layer neural network (MLNN). The results for the performance criteria reveal that the proposed deep Bid-LSTM networks perform better than the MLNN model, according to many of the evaluation indicators of this study.
Ground control points (GCPs) are critical for agricultural remote sensing that require georeferencing and calibration of images collected from an unmanned aerial vehicles (UAV) at different times. However, the conventional stationary GCPs are time-consuming and labor-intensive to measure, distribute, and collect their information in a large field setup. An autonomous mobile GCP and a collaboration strategy to communicate with the UAV were developed to improve the efficiency and accuracy of the UAV-based data collection process. Prior to actual field testing, preliminary tests were conducted using the system to show the capability of automatic path tracking by reducing the root mean square error (RMSE) for lateral deviation from 34.3 cm to 15.6 cm based on the proposed look-ahead tracking method. The tests also indicated the feasibility of moving reflectance reference panels successively along all the waypoints without having detrimental effects on pixel values in the mosaicked images, with the percentage errors in digital number values ranging from −1.1% to 0.1%. In the actual field testing, the autonomous mobile GCP was able to successfully cooperate with the UAV in real-time without any interruption, showing superior performances for georeferencing, radiometric calibration, height calibration, and temperature calibration, compared to the conventional calibration method that has stationary GCPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.