Type I collagen (Col I) is a main component of extracellular matrix (ECM). Its safety, biocompatibility, hydrophilicity and pyrogen immunogenicity make it suitable for tissues engineering applications. Mg2+ also control a myriad of cellular processes, including the bone development by enhancing the attachment and differentiation of osteoblasts and accelerating mineralization to enhance bone healing. In our studies, Mg2+ bind collagen to promote the proliferation and differentiation of osteoblasts through the expression of integrins and downstream signaling pathways. In order to clarify the biological behavior effect of 10 mM Mg2+/Col I coating, we performed 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), alkaline phosphatase (ALP), 4′6-diamidino-2-phenylindole (DAPI), Alizarin red staining and Rhodamine B-isothiocyanate (RITC)-labeled phalloidin experiments and found that 10 mM Mg2+ group, Col I-coating group, 10 mM Mg2+/Col I-coating group, respectively, promoted the proliferation and differentiation of osteoblasts, especially 10 mM Mg2+/Col I-coating group. We detected the mRNA expression of osteogenic-related genes (Runx2, ALP and OCN, OPN and BMP-2) and the protein expression of signaling pathway (integrin α2, integrin β1, FAK and ERK1/2), these results indicated that 10 mM Mg2+/Col I coating play an critical role in up-regulating the MC3T3-E1 cells activity. The potential mechanisms of this specific performance may be through activating via integrin α2β1-FAK-ERK1/2 protein-coupled receptor pathway.
To discuss the feasibility of the application of porous Mg–Sr alloy combined with Mg–Sr alloy membrane in the repair of mandibular defects in dogs. The second and third mandibular premolars on both sides were extracted from six dogs. The model of mandible buccal fenestration bone defects were prepared after the sockets healed. Twelve bone defects were randomly divided into groups A and B, then Mg–Sr alloy was implanted in bone defects of group A and covered by Mg–Sr alloy membrane while Mg–Sr alloy was implanted in bone defects of group B and covered by mineralized collagen membrane. Bone defects observed on cone beam computed tomographic images and comparing the gray value of the two groups after 4, 8 and 12 weeks. After 12 weeks, the healing of bone defects were evaluated by gross observation, X-ray microscopes and histological observation of hard tissue. Bone defects in each group were repaired. At 8 and 12 weeks, the gray value of group A was higher than that of group B (P < 0.05). At 12 weeks, the bone volume fraction of group A was higher than that of group B (P < 0.05). The newly woven bone in group A is thick and arranged staggered, which was better than that of group B. Porous Mg–Sr alloy combined with Mg–Sr alloy membrane could further promote the repair of mandibular defects, and obtain good osteogenic effect.
Data from several case-control studies on the relation between the Cyclin D1 (CCND1) G870A polymorphism and oral cancer susceptibility implicated conflicting conclusions. Thus, a meta-analysis was performed to derive a more precise evaluation of the association. We searched PubMed and Embase for related studies that had been published in English and eight available studies were finally included in the meta-analysis. Odd ratios (ORs) and 95 % confidence intervals (CIs) were calculated for each study. Our meta-analysis suggested that CCND1 G870A polymorphism was not associated with oral cancer risk (OR AA vs. GG = 1.08, 95 % CI = 0.90-1.30, P heterogeneity = 0.175; OR AA + GA vs. GG = 1.02, 95 % CI = 0.91-1.14, P heterogeneity = 0.781; OR AA vs. GA + GG = 1.16, 95 % CI = 0.98-1.36, P heterogeneity = 0.107; OR A vs. G = 1.05 95 % CI = 0.96-1.15, P heterogeneity = 0.211; OR GA vs. GG = 0.94, 95 % CI = 0.82-1.08, P heterogeneity = 0.935). However, in the subgroup analysis by ethnicity, possible significance among Asian groups was indicated in two genetic models (OR AA vs. GA + GG = 1.27, 95 % CI = 1.05-1.54, P heterogeneity = 0.572; OR allele A vs. allele G = 1.11, 95 % CI = 1.00-1.24, P heterogeneity = 0.211). Taken together, the meta-analysis revealed that CCND1 G870A polymorphism might be correlated with the susceptibility of oral cancer in Asians.
Magnesium (Mg) alloy with good mechanical properties and biodegradability is considered as one of the ideal bone repair materials. However, the rapid corrosion of Mg-based metals can pose harm to the function of an implant in clinical applications. In this study, micro-arc oxidation coating was prepared on the surface of the Mg–Ca matrix, then the chitosan and mineralized collagen (nano-hydroxyapatite/collagen; nHAC) were immobilized on the surface of the MAO/Mg–Ca matrix to construct the CS-nHAC/Mg–Ca composites of different component proportions (the ratio of CS to nHAC is 2:1, 1:1, and 1:2, respectively). The corrosion resistance, osteogenic activity, and angiogenic ability were extensively investigated. The results indicated that the CS-nHAC reinforcement materials can improve the corrosion resistance of the Mg matrix significantly and promote the proliferation and adhesion of mouse embryo osteoblast precursor cells (MC3T3-E1) and human umbilical vein endothelial cells (HUVECs). In addition, the CS-nHAC/Mg–Ca composites can not only promote the alkaline phosphatase (ALP) activity and extracellular matrix mineralization of MC3T3-E1 cells but also enhance the migration motility and vascular endothelial growth factor (VEGF) expression of HUVECs. Meanwhile, the 2CS-1nHAC/Mg–Ca composite exhibited the optimum function characteristics compared with other samples. Therefore, considering the improvement of corrosion resistance and biocompatibility, the CS-nHAC/Mg–Ca composites are expected to be a promising orthopedic implant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.