The Flight Environment Simulation System (FESS) at Altitude Ground Test Facilities (AGTF) is used to test aircraft engines. The FESS model is the basis of research and verification of advanced control algorithms. To further improve the steady and dynamic accuracy of the FESS model, a modeling method based on quasi-one-dimensional flow is proposed. Firstly, based on the unified inlet/outlet boundary specifications, the component models of test equipment, such as the quasi-one-dimensional flow model of pipe, the regulating valve model considering the heat transfer process, the multi-inlet and multi-outlet volume model reflecting the mixing characteristics of air flow, and the air source model and engine model, were established. Secondly, according to the real structure and working mechanism of the FESS, the above component models were used to build the numerical simulation model of the FESS. The simulation results showed that the relative deviation of mass flow and pressure were less than 4.4% and 0.9%, respectively, which verifies the correctness of the modeling method. In addition, the PI controller was designed for the FESS, and the simulation results show that the model is able to support controller development and verification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.