The present study examined the bioacessibility of DDTs and PBDEs in cooked fish (yellow grouper; Epinephelus awoara) with and without heating using the colon extended physiologically based extraction test. The bioaccessibility of DDTs and PBDEs increased from 60 and 26% in raw fish to 83 and 63%, respectively, after the addition of oil to raw fish. However, they decreased from 83 to 66% and from 63 to 40%, respectively, when oil-added fish were cooked. Human health risk assessment based on bioaccessible concentrations of DDTs and PBDEs in fish showed that the maximum allowable daily fish consumption rates decreased from 25, 59, and 86 g day to 22, 53, and 77 g day for children, youths, and adults, respectively, after fish were cooked with oil. These findings indicated that the significance of cooking oil to the bioaccessibility of DDTs and PBDEs in food should be considered in assessments of human health risk.
A naturally selenium-accumulating Cardamine sp. is growing in Yutangba Selenium Mining Field, Enshi area, Hubei Province, China, where the geochemical environment is selenium-enriched and endemic selenosis ever occurred in humans. The present study investigated the characteristics of accumulation, speciation and quantity of selenium in Cardamine sp. with HPLC-ICP-MS. Results show that Cardamine sp. can accumulate Se at most 1427 mg/kg in seedling leaves. Even after the biomass incensement of growing up, the plant still could accumulate Se up to several hundred of mg/kg in concentration. Moreover, the biomass enrichment coefficient (BEC) of Se is exceedingly high, in the seedling leaves mostly, higher than 50 mg/kg; in the range of 43.7-68 mg/kg; and the lowest value is higher than 3 mg/kg in mature fronds. Se is present in the plant predominantly in form of SeCys 2 with the highest concentration in seeds; up to 1081 mg/kg as Se. In contrast, SeCys 2 levels are low during early growth period; they are 136.1 mg/kg as Se in seedling fronds and 39.4 mg/kg as Se in mature fronds, respectively. SeMet concentration is comparatively low; 10.6 mg/kg as Se in seedling frond and 5.3 mg/kg as Se in half mature fronds, respectively. This indicates that Cardamine sp. is extremely efficient in extracting Se from soil and translocating it into its above-ground biomass. Therefore, Cardamine sp., found in Yutangba Se Mining Field may be a new Se hyperaccumulator. It is still uncertain whether the Se-accumulation or detoxification of Cardamine sp. happens through the pathway of SeCys methylated to form Se-methylselenoCys or through the formation of Se-carboxymethyl-selenohomocysteine. Indeed, further study should be carried out on the determination of more Se species to explain the high Se hyperaccumulation in Cardamine sp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.