Heat dissipation of electronic packages has become one of the limiting factors to miniaturization. The removal of the heat generated is a critical issue in electronic packaging. With the development of thermal management, thermal interface material (TIM) plays a more and more important role in electronics packaging. A new nano-TIM with nanofibers prepared by using electrospinning has been suggested in recent years. In this experiment study, the carbon nanotube (CNT) nano-particles were added into the polymer solution before the electrospinning to improve the thermal conductivity of nano-TIM. The polymer solution of polyurethane was used for present electrospinning. The effects of a number of process parameters in the electrospinning were studied in this work. Different variables such as the distance between needle tip and collector, the voltage applied, and CNT nano-particles content were studied. The Scanning Electron Microscopy (SEM) was used to characterize nano-TIMs with CNT nano-particles.
Aligned array electrospun nanofibers are preferred and even necessary in most of applications. Most research reported was focus on the quality and uniform of directions of the array nanofibers. This paper describes a simple method for fabrication of large area aligned naonofibers. A zigzag shape collector was used in the electrospinning system. Alignment of nanofibers was realized by this system. Nanofibers collected on the peak and valley of the Aluminum foil were oriented. This system is a hybrid structure of parallel electrodes and disc collector with tip-like top.
ZnO nanofibers on Si (100) were synthesized by electrospun and calcination process. The morphology, structure and optical performance were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and photoluminescence (PL) spectrum. XRD results indicated ZnO nanofibers on Si (100) wafer calcined at 600 °C had a preferred growth orientation of (002) direction. ZnO nanofibers calcinated at 600 °C had an excellent crystalline structure with the diameters ranging from 70 to 150 nm. Defect states in the ZnO nanofibers were observed, which resulted in the green emission in PL spectrum.
Purpose To quantify and analyze the anterior chamber (AC) and angle (ACA) characteristics in Chinese children with different refractive status by swept-source optical coherence tomography (SS-OCT). Methods In a cross-sectional observational study, 383 children from two primary schools in Shandong Province, China, underwent a complete ophthalmic examination. First, the anterior chamber depth (ACD), anterior chamber width (ACW), angle-opening distance (AOD), and trabecular-iris space area (TISA) were evaluated automatically using a CASIA2 imaging device. AOD and TISA were measured at 500, 750µm nasal (N1 and N2, respectively), and temporal (T1 and T2, respectively) to the scleral spur (SS). Cycloplegic refraction and axial length (AL) were then measured. According to spherical equivalent refraction (SER), the children were assigned to hyperopic (SER > 0.50D), emmetropic (-0.50D < SER ≤ 0.50D), and myopic groups (SER ≤ -0.50D). Results Out of the 383 children, 349 healthy children (160 girls) with a mean age of 8.23 ± 1.06 years (range: 6–11 years) were included. The mean SER and AL were − 0.10 ± 1.57D and 23.44 ± 0.95mm, respectively. The mean ACD and ACW were 3.17 ± 0.24mm and 11.69 ± 0.43mm. The mean AOD were 0.72 ± 0.25, 0.63 ± 0.22mm at N1, T1, and 0.98 ± 0.30, 0.84 ± 0.27mm at N2, T2. The mean TISA were 0.24 ± 0.09, 0.22 ± 0.09mm2 at N1, T1, and 0.46 ± 0.16, 0.40 ± 0.14mm2 at N2, T2. The myopic group had the deepest AC and the widest angle. Compared with boys, girls had shorter AL, shallower ACD, narrower ACW, and ACA (all p < 0.05). By Pearson’s correlation analysis, SER was negatively associated with ACD, AOD, and TISA. AL was positively associated with ACD, ACW, AOD, and TISA. In the multiple regression analysis, AOD and TISA were associated with deeper ACD, narrower ACW, and longer AL. Conclusion In primary school students, the myopic eyes have deeper AC and wider angle. ACD, ACW, AOD, and TISA all increase with axial elongation. ACA is highly correlated with deeper ACD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.