One-dimensional nanostructure materials offer opportunities for improving performance of electrochemical sensors. In this work, vertically ZnO nanorods (ZNRs) sensitized with gold nanoparticles (GNPs) were designed and fabricated onto indium tin oxide coated polyethylene terephthalate (ITO/PET) film for dopamine sensing. ZNRs that helpful for electric signal collecting by providing electron transfer pathways were electrodeposited on ITO/PET film firstly. Then GNPs that possess excellent electrocatalytic activity toward target were decorated onto ZNRs via potentiodynamic electrodeposition. These gold nanoparticles sensitized ZnO nanorods arrays (GNPs/ZNRs) combine the advantages of GNPs and ZNRs, thus providing chance to develop electrochemical sensors with ultrahigh sensitivity and excellent selectivity. Several important nervous system diseases (such as Parkinson's disease, schizophrenia, senile dementia, AIDS, et al.) have proved to be associated with dysfunctions of dopamine system. So, the detection of dopamine becomes essential in clinical medical practice and nerve physiology study. When used for dopamine sensing, the fabricated electrochemical sensor shows two linear dynamic ranges (0.01-20 μM and 50-1000 μM) toward dopamine. Moreover, this proposed electrochemical sensor has been successfully applied to the determination of dopamine in human urine with satisfied recoveries (95.3% to 111.3%) and precision (1.1% to 8.4% of RSD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.