Adsorption of molecular oxygen on Cu(N) (N = 2-10) clusters is investigated using density functional theory under the generalized gradient approximation of Perdew-Burke-Ernzerhof. An extensive structure search is performed to identify low-energy conformations of Cu(N)O(2) complexes. Optimal adsorption sites are assigned for low-energy isomers of the clusters. Among these are some new arrangements unidentified heretofore. Distinct size dependences are noted for the ground state Cu(N)O(2) complexes in stability, adsorption energy, Cu-O(2) bond strength, and other characteristic quantities. Cu(N)O(2) with odd-N tend to have larger adsorption energies than their even-N neighbors, with the exception of Cu(6)O(2), which has a relatively large adsorption energy resulting from the adsorption-induced 2D-to-3D structural transition in Cu(6). The energetically preferred spin-multiplicity of all the odd-N Cu(N)O(2) complexes is doublet; it is triplet for N = 2 and 4 and singlet for N = 6, 8, and 10.
BackgroundHydration is a universal phenomenon in nature. The interactions between biomolecules and water of hydration play a pivotal role in molecular biology. 2-Thioxanthine (2TX), a thio-modified nucleic acid base, is of significant interest as a DNA inhibitor yet its interactions with hydration water have not been investigated either computationally or experimentally. Here in, we reported an ab initio study of the hydration of 2TX, revealing water can form seven hydrated complexes.ResultsHydrogen-bond (H-bond) interactions in 1:1 complexes of 2TX with water are studied at the MP2/6-311G(d, p) and B3LYP/6-311G(d, p) levels. Seven 2TX...H2O hydrogen bonded complexes have been theoretically identified and reported for the first time. The proton affinities (PAs) of the O, S, and N atoms and deprotonantion enthalpies (DPEs) of different N-H bonds in 2TX are calculated, factors surrounding why the seven complexes have different hydrogen bond energies are discussed. The theoretical infrared and NMR spectra of hydrated 2TX complexes are reported to probe the characteristics of the proposed H-bonds. An improper blue-shifting H-bond with a shortened C-H bond was found in one case. NBO and AIM analysis were carried out to explain the formation of improper blue-shifting H-bonds, and the H-bonding characteristics are discussed.Conclusion2TX can interact with water by five different H-bonding regimes, N-H...O, O-H...N, O-H...O, O-H...S and C-H...O, all of which are medium strength hydrogen bonds. The most stable H-bond complex has a closed structure with two hydrogen bonds (N(7)-H...O and O-H...O), whereas the least stable one has an open structure with one H-bond. The interaction energies of the studied complexes are correlated to the PA and DPE involved in H-bond formation. After formation of H-bonds, the calculated IR and NMR spectra of the 2TX-water complexes change greatly, which serves to identify the hydration of 2TX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.