Adsorption of molecular oxygen on Cu(N) (N = 2-10) clusters is investigated using density functional theory under the generalized gradient approximation of Perdew-Burke-Ernzerhof. An extensive structure search is performed to identify low-energy conformations of Cu(N)O(2) complexes. Optimal adsorption sites are assigned for low-energy isomers of the clusters. Among these are some new arrangements unidentified heretofore. Distinct size dependences are noted for the ground state Cu(N)O(2) complexes in stability, adsorption energy, Cu-O(2) bond strength, and other characteristic quantities. Cu(N)O(2) with odd-N tend to have larger adsorption energies than their even-N neighbors, with the exception of Cu(6)O(2), which has a relatively large adsorption energy resulting from the adsorption-induced 2D-to-3D structural transition in Cu(6). The energetically preferred spin-multiplicity of all the odd-N Cu(N)O(2) complexes is doublet; it is triplet for N = 2 and 4 and singlet for N = 6, 8, and 10.
Micellar-enhanced ultrafiltration (MEUF) was applied to the separation of phenolic compounds p-nitrophenol (PNP), p-chlorophenol (PCP), p-cresol (PC) and phenol (P) from effluents using a hydrophilic polyethersulfone ultrafiltration membrane. Cationic cetylpyridinium chloride (CPC), nonionic TX-100 and anionic sodium dodecyl benzene sulfonate (SDBS) were chosen as the surfactants. Several important parameters, i.e. the separation efficiency, the distribution coefficient of phenolic compounds and the removal ratio of surfactants, were investigated. It was shown that the separation efficiency and the distribution coefficient of phenolic compounds ascended with the increasing surfactant concentration and could be arranged as the following order: PNP>PCP>PC>P. Moreover, in the case of phenolic compound separation, CPC achieved the highest treatment efficiency, and the separation efficiency of SDBS was a little lower than that of TX-100. The removal ratios of the same surfactant when treating different phenolic effluents were nearly similar. However, when treating the same phenolic compound, the sequence of the surfactant rejection was in the following order: TX-100>CPC>SDBS. These results indicate that CPC has a distinct superiority in the treatment of phenolic effluents via the MEUF process, and PNP easily solubilizes in the surface of the micelles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.