NRH: quinone oxidoreductase 2 (NQO2) is a cytosolic and ubiquitously expressed flavoprotein that catalyzes the two-electron reduction of quinone to hydroquinones. Herein, we assessed the protein expression, subcellular localization, and possible functions of NQO2 in mouse oocyte meiotic maturation and embryo development. Western blot analysis detected high and stable protein expression of NQO2 in mouse oocytes during meiotic progression. Immunofluorescence illustrated NQO2 distribution on nuclear membrane, chromosomes, and meiotic spindles. Microtubule poisons treatment (nocodazole and taxol) showed that filamentous assembly of NQO2 and its co-localization with microtubules require microtubule integrity and normal dynamics. Increased levels of NQO2, reactive oxygen species (ROS), malondialdehyde (MDA), and autophagy protein Beclin1 expression were detected in oocytes cultured with ROS stimulator vitamin K3 (VK3), combined with decreased antioxidant glutathione (GSH). These oocytes were arrested at metaphase I with abnormal spindle structure and chromosome configuration. However, this impact was counteracted by melatonin or NQO2 inhibitor S29434, and the spindle configuration and first polar body extrusion were restored. Similarly, morpholino oligo-induced NQO2 knockdown suppressed ROS, MDA, and Beclin1, instead increased GSH in oocytes under VK3. Supplementary S29434 or melatonin limited changes in NQO2, ROS, MDA, Beclin1, and GSH during in vitro aging of ovulated oocytes, thereby maintaining spindle structure, as well as ordered chromosome separation and embryo development potential after parthenogenetic activation with SrCl2. Taken together, NQO2 is involved in ROS generation and subsequent cytotoxicity in oocytes, and its inhibition can restore oocyte maturation and embryo development, suggesting NQO2 as a pharmacological target for infertility cure.
Ste20-like kinase (SLK) is involved in cell proliferation and migration in somatic cells.This study aims to explore SLK expression and function in mouse oocyte meiosis.Western blot, immunofluorescence, Co-immunoprecipitation, drug treatment, cRNA construct and in vitro transcription, microinjection of morpholino oilgo (MO) and cRNA were performed in oocytes. High and stable protein expression of SLK was detected in mouse oocyte meiosis, with dynamic distribution in the nucleus, chromosomes and spindle apparatus. SLK phosphorylation emerges around meiotic resumption and reaches a peak during metaphase I (MI) and metaphase II. SLK knockdown with MO or expression of kinase-dead SLK K63R dramatically delays meiotic resumption due to sequentially suppressed phosphorylation of Polo-like kinase 1 (Plk1) and cell division cycle 25C (CDC25C) and dephosphorylation of cyclin-dependent kinase 1 (CDK1). SLK depletion promotes ubiquitination-mediated degradation of paxillin, an antagonist to α-tubulin deacetylation, and thus destroys spindle assembly and chromosome alignment; these phenotypes can be substantially rescued by exogenous expression of SLK kinase active fragment. Additionally, exogenous SLK effectively promotes meiotic progression and spindle assembly in aging oocytes with reduced SLK. Collectively, this study reveals SLK is required for meiotic resumption and spindle assembly in mouse oocyte meiosis. | INTRODUCTIONMammalian oocytes of high-developmental-competence are required for successful fertilization and subsequent embryo development, which initiates a new life. 1 Fully-grown oocytes are arrested at the diplotene stage of the first meiotic prophase, known as the germinal vesicle (GV) stage. 2 Following the ovulatory luteinizing hormone (LH) surge, the resumption of meiosis occurs with the signature of germinal vesicle breakdown (GVBD) followed by chromatin condensation. 3,4 During the prometaphase of meiosis I (Pro-MI), the acentrosomal spindle is assembled along with the congression of condensed chromosomes. 5 Upon all chromosomes are correctly aligned and stably attached by microtubules from spindle poles at metaphase I (MI), the meiotic cell cycle moves to anaphase I (AI), during which the homologous chromosomes are segregated, and the first polar body (PB1) is discharged. 6 The orderly meiotic progression is essential for the high-quality oocytes and, furthermore, female reproductive health. 1,7 The abnormal oocyte meiotic process leads to embryo aneuploidy, a significant cause of infertility, abortion and fetal deformity. 7 The fully-grown oocytes accumulate large quantities of mRNAs and proteins and stop de novo mRNA transcription at the GV stage, so the meiotic progression is regulated by a complex and cascading
Phospholipase D2 (PLD2) is involved in cytoskeletal reorganization, cell migration, cell cycle progression, transcriptional control and vesicle trafficking. There is no evidence about PLD2 function in oocytes during meiosis. Herein, we analyzed PLD2 expression and its relationship with spindle formation and positioning in mouse oocyte meiosis. High protein level of PLD2 was revealed in oocytes by Western blot, which remained consistently stable from prophase I with intact germinal vesicle (GV) up to metaphase II (MII) stage. Immunofluorescence showed that PLD2 appeared and gathered around the condensed chromosomesafter germinal vesicle breakdown (GVBD), and co-localized with spindle from pro-metaphase I (pro-MI) to metaphase I (MI) and at MII stage. During anaphase I (Ana I) to telophase I (Tel I) transition, PLD2 was concentrated in the spindle polar area but absent from the midbody. In oocytes incubated with NFOT, an allosteric and catalytic inhibitor to PLD2, the spindle was enlarged and center-positioned, microtubules were resistant to cold-induced depolymerization and, additionally, the meiotic progression was arrested at MI stage. However, spindle migration could not be totally prevented by PLD2 catalytic specific inhibitors, FIPI and 1-butanol, implying at least partially, that PLD2 effect on spindle migration needs non-catalytic domain participation. NFOT-induced defects also resulted in actin-related molecules’ distribution alteration, such as RhoA, phosphatidylinosital 4, 5- biphosphate (PIP2), phosphorylated Colifin and, consequently, unordered F-actin dynamics. Taken together, these data indicate PLD2 is required for the regulation of microtubule dynamics and spindle migration toward the cortex in mammalian oocytes during meiotic progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.