Purpose
Stock price prediction is a hot topic and traditional prediction methods are usually based on statistical and econometric models. However, these models are difficult to deal with nonstationary time series data. With the rapid development of the internet and the increasing popularity of social media, online news and comments often reflect investors’ emotions and attitudes toward stocks, which contains a lot of important information for predicting stock price. This paper aims to develop a stock price prediction method by taking full advantage of social media data.
Design/methodology/approach
This study proposes a new prediction method based on deep learning technology, which integrates traditional stock financial index variables and social media text features as inputs of the prediction model. This study uses Doc2Vec to build long text feature vectors from social media and then reduce the dimensions of the text feature vectors by stacked auto-encoder to balance the dimensions between text feature variables and stock financial index variables. Meanwhile, based on wavelet transform, the time series data of stock price is decomposed to eliminate the random noise caused by stock market fluctuation. Finally, this study uses long short-term memory model to predict the stock price.
Findings
The experiment results show that the method performs better than all three benchmark models in all kinds of evaluation indicators and can effectively predict stock price.
Originality/value
In this paper, this study proposes a new stock price prediction model that incorporates traditional financial features and social media text features which are derived from social media based on deep learning technology.
Low-rank decomposition models have potential for fabric defect detection, where a feature matrix is decomposed into a low-rank matrix that corresponding to repeated texture structure and a sparse matrix that represent defective regions. Two limitations, however, still exist. First, previous work might fail to detect some large homogeneous defective block. Second, when the background and defective regions are relatively coherent or the texture of fabric image is complex, it is difficult to use previous methods to separate them. To deal with these problems, a new weighted low-rank decomposition model with Laplace regularization (WLRL) is proposed in this paper: (1) a weighted low-rank decomposition model that can decompose the original image into background and defective regions, and (2) a Laplace regularization that can enlarge the distance between the background and the defective regions. The performance of the proposed method WLRL is evaluated on the box- and star-patterned fabric databases, and superior results are shown compared with state-of-the-art methods, that is, 98.70% ACC (accuracy) and 72.83% TPR (true positive rate) for box-patterned fabrics, 99.09% ACC (accuracy) and 83.63% TPR (true positive rate) for star-patterned fabrics.
In recent years, machine learning methods has been widely used in various fields, such as finance, spatial sciences, smart grid, intelligent transportation, renewable energy, agriculture, especially medicine. In the era of big medical data, the advantage of machine learning is that it can predict and diagnose through the analysis of a large number of clinical data, and its performance is very close and competitive to or even better than the performance of clinicians. This paper focuses on the application of machine learning techniques in the field of stomatology and detailedly describes application cases involving oral cancer, dental caries, periodontitis, dental pulp diseases, periapical lesions, oral implants, and orthodontics. Finally, the research obstacles and future work are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.