We reported diverse soliton operations in a thulium/holmium-doped fiber laser by taking advantage of a tapered fiber-based topological insulator (TI) Bi 2 Te 3 saturable absorber (SA). The SA had a nonsaturable loss of ∼53.5% and a modulation depth of 9.8%. Stable fundamentally mode-locked solitons at 1909.5 nm with distinct Kelly sidebands on the output spectrum, a pulse repetition rate of 21.5 MHz, and a measured pulse width of 1.26 ps were observed in the work. By increasing the pump power, both bunched solitons with soliton number up to 15 and harmonically mode-locked solitons with harmonic order up to 10 were obtained. To our knowledge, this is the first report of both bunched solitons and harmonically mode-locked solitons in a fiber laser at 2 μm region incorporated with TIs.
High power all fiber mid-IR supercontinuum (SC) generation in a ZBLAN fiber pumped by a 2 μm master oscillator power amplifier (MOPA) system is demonstrated. A semiconductor saturable absorber mirror (SESAM) passively mode-locked laser with pulse width of 26 ps at 1960 nm is used as the seed of the MOPA system. A laser spectrum extending from ~1.9 μm to beyond 2.6 μm is generated in a subsequent thulium-doped fiber amplifier (TDFA). Then, the spectrum is further broadened to the mid-IR region in the ZBLAN fiber. A mid-IR SC extending from 1.9 to 3.9 μm with 7.11 W average output power is obtained based on a large mode area TDFA, the SC power for wavelengths longer than 2.5 μm is 3.52 W with a power ratio of 49.5% with respect to the total SC power. The overall optical conversion efficiency from the 790 nm pump of the large mode area TDFA to the total SC output is 10.4%. To the best of our knowledge, both the 7.11 W total average power and 3.52 W average power in wavelengths beyond 2.5 μm are the highest power ever reported for a mid-IR SC generation in ZBLAN fiber pumped by 2 μm fiber lasers and TDFAs.
A high-power ultraflat near-infrared supercontinuum (SC) is generated in a section of photonic crystal fiber (PCF) pumped by an amplified spontaneous emission (ASE) source instead of continuous-wave (CW) and pulsed lasers. A low-power ASE seed at 1 m is amplified to be 90.9 W by two fiber amplifiers and then emitted from a 10-m-core fiber. Using this ASE source to pump a section of 100-m-long PCF, a 49.5-W near-infrared SC is obtained, and the 5-dB spectral bandwidth is 760 nm, covering from 1062 to 1822 nm. This is the reported highest power of ASE-pumped SC source. A comparative experiment is taken with a 122-W CW laser at 1090 nm to pump the same PCF. A 56.2-W SC source is generated with 5-dB spectral width of 605 nm from 1082 to 1687 nm. The conversion efficiency to SC is higher, and the spectrum is broader and flatter using the ASE source as the pump. Conclusively, pump incoherence can aid the SC generation and spectral flatness.
We demonstrate Watt-level flat visible supercontinuum (SC) generation in photonic crystal fibers, which is directly pumped by broadband noise-like pulses from an Yb-doped all-fiber oscillator. The novel SC generator is featured with elegant all-fiber-integrated architecture, high spectral flatness and high efficiency. Wide optical spectrum spanning from 500 nm to 2300 nm with 1.02 W optical power is obtained under the pump of 1.4 W noise-like pulse. The flatness of the spectrum in the range of 700 nm~1600 nm is less than 5 dB (including the pump residue). The exceptional simplicity, economical efficiency and the comparable performances make the noise-like pulse oscillator a competitive candidate to the widely used cascade amplified coherent pulse as the pump source of broadband SC. To the best of our knowledge, this is the first demonstration of SC generation which is directly pumped by an all-fiber noise-like pulse oscillator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.