Optimization problem is the problem which can be often encountered mostly in industrial design, and the key of optimization is to find the global optimum and higher constriction speed. This paper proposes a PSO algorithm based on BP neural network by neural network trains and selects individual extreme best randomly, to make the particle follow the optimal particle in the solution space search, and obtain the optimum extreme best in the whole situation. Through the application of the simulation experiment on image segmentation showed that the algorithm is suitable in dealing with multiple types function and constraint, with fast convergence speed, and easy combination with traditional optimization methods, thus improving its own limitations, and solving problems more efficiently.
Large-scale image recognition refers to giving computer the human visiual intelligent, in the massive data mode using computer to rrecognize the input image rapidly and exactly. In the process of recognition, the light, rotation and other factors will be the effects, meanwhile these noises will increase the difficulty of visual object recognition. How to recognize the large-scale image in the real scene and complex environment becomes a research topic. In order to recognize the large-scale image in real and complex envvironment and get a better recognition effect, this paper presents large-scale image based recognition algorithms with fusion of SIFT features and BP neutral network.
With the ever-changing education information technology, it is a big problem for the universities and college that how to classify the thousands of copies of the image during the art examination marking process. This paper is to explore the application of artificial intelligence techniques, and to do accurate classification of a large number of images within a limited time and under the help of computer. It is can be seen that the proposed method is feasible through the application of the results of the actual work.
Artificial neural network training
Artificial neural network training methods have two mainly style, which are Incremental Training and Batch Training, and take the amount of different network training mission as the distinction standard. First, to introduce the Incremental Training [1], that means whenever the network receives the input vector and target vector, it have to adjust once the connection weights and thresholds. It is an online learning method. The other one is Batch Training [2], that means no longer adjust the connection and immediately, but perform bulk adjustment, and after a given volume of the input vector and target vector. Both training methods can be applied, whether it is static or dynamic neural network. Different results will be obtained by artificial neural network for the use of different training methods.
When using artificial neural networks to solve specific problems, learning methods, training methods and artificial neural network function should be selected according to the expected results of question type and its specific requirements [3-4].
The selection of parameters of wavelet neural networks and adaptive learning
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.