The diamondback moth (DBM), Plutella xylostella, one of the most destructive lepidopteran pests worldwide, has developed field resistance to Bacillus thuringiensis (Bt) Cry toxins. Although miRNAs have been reported to be involved in insect resistance to multiple insecticides, our understanding of their roles in mediating Bt resistance is limited. In this study, we constructed small RNA libraries from midguts of the Cry1Ac-resistant (Cry1S1000) strain and the Cry1Ac-susceptible strain (G88) using a high-throughput sequencing analysis. A total of 437 (76 known and 361 novel miRNAs) were identified, among which 178 miRNAs were classified into 91 miRNA families. Transcripts per million analysis revealed 12 differentially expressed miRNAs between the Cry1S1000 and G88 strains. Specifically, nine miRNAs were down-regulated and three up-regulated in the Cry1S1000 strain compared to the G88 strain. Next, we predicted the potential target genes of these differentially expressed miRNAs and carried out GO and KEGG pathway analyses. We found that the cellular process, metabolism process, membrane and the catalytic activity were the most enriched GO terms and the Hippo, MAPK signaling pathway might be involved in Bt resistance of DBM. In addition, the expression patterns of these miRNAs and their target genes were determined by RT-qPCR, showing that partial miRNAs negatively while others positively correlate with their corresponding target genes. Subsequently, novel-miR-240, one of the differentially expressed miRNAs with inverse correlation with its target genes, was confirmed to interact with Px017590 and Px007885 using dual luciferase reporter assays. Our study highlights the characteristics of differentially expressed miRNAs in midguts of the Cry1S1000 and G88 strains, paving the way for further investigation of miRNA roles in mediating Bt resistance.
Background Retinoblastoma (RB) is frequently occurring malignant tumors that originate in the retina, and their exact cause and development mechanisms are yet to be fully comprehended. In this study, we identified possible biomarkers for RB and delved into the molecular mechanics linked with such markers. Methods In this study GSE110811 and GSE24673 were analyzed. Weighted gene co-expression network analysis (WGCNA) was applied to screen modules and genes associated with RB. By overlapping RB-related module genes with differentially expressed genes (DEGs) between RB and control samples, differentially expressed retinoblastoma genes (DERBGs) were acquired. A gene ontology (GO) enrichment analysis and a kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis were conducted to explore the functions of these DERBGs. To study the protein interactions of DERBGs, a protein–protein interaction (PPI) network was constructed. Hub DERBGs were screened using the least absolute shrinkage and selection operator (LASSO) regression analysis, as well as the random forest (RF) algorithm. Additionally, the diagnostic performance of RF and LASSO methods was evaluated using receiver operating characteristic (ROC) curves and single-gene gene set enrichment analysis (GSEA) was conducted to explore the potential molecular mechanisms involved with these Hub DERBGs. In addition, the competing endogenous RNA (ceRNA) regulatory network of Hub DERBGs was constructed. Result About 133 DERBGs were found to be associated with RB. GO and KEGG enrichment analyses revealed that the important pathways of these DERBGs. Furthermore, the PPI network revealed 82 DERBGs interacting with each other. By RF and LASSO methods, PDE8B, ESRRB, and SPRY2 were identified as Hub DERBGs in patients with RB. From the expression assessment of Hub DERBGs, it was found that the levels of expression of PDE8B, ESRRB, and SPRY2 were significantly decreased in the tissues of RB tumors. Secondly, single-gene GSEA revealed a connection between these 3 Hub DERBGs and oocyte meiosis, cell cycle, and spliceosome. Finally, the ceRNA regulatory network revealed that hsa-miR-342-3p, hsa-miR-146b-5p, hsa-miR-665, and hsa-miR-188-5p may play a central role in the disease. Conclusion Hub DERBGs may provide new insight into RB diagnosis and treatment based on the understanding of disease pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.