BackgroundNeoantigen (NeoAg) peptides displayed at the tumor cell surface by human leukocyte antigen molecules show exquisite tumor specificity and can elicit T cell mediated tumor rejection. However, few NeoAgs are predicted to be shared between patients, and none to date have demonstrated therapeutic value in the context of vaccination.MethodsWe report here a phase I trial of personalized NeoAg peptide vaccination (PPV) of 24 stage III/IV non-small cell lung cancer (NSCLC) patients who had previously progressed following multiple conventional therapies, including surgery, radiation, chemotherapy, and tyrosine kinase inhibitors (TKIs). Primary endpoints of the trial evaluated feasibility, tolerability, and safety of the personalized vaccination approach, and secondary trial endpoints assessed tumor-specific immune reactivity and clinical responses. Of the 16 patients with epidermal growth factor receptor (EGFR) mutations, nine continued TKI therapy concurrent with PPV and seven patients received PPV alone.ResultsOut of 29 patients enrolled in the trial, 24 were immunized with personalized NeoAg peptides. Aside from transient rash, fatigue and/or fever observed in three patients, no other treatment-related adverse events were observed. Median progression-free survival and overall survival of the 24 vaccinated patients were 6.0 and 8.9 months, respectively. Within 3–4 months following initiation of PPV, seven RECIST-based objective clinical responses including one complete response were observed. Notably, all seven clinical responders had EGFR-mutated tumors, including four patients that had continued TKI therapy concurrently with PPV. Immune monitoring showed that five of the seven responding patients demonstrated vaccine-induced T cell responses against EGFR NeoAg peptides. Furthermore, two highly shared EGFR mutations (L858R and T790M) were shown to be immunogenic in four of the responding patients, all of whom demonstrated increases in peripheral blood neoantigen-specific CD8+ T cell frequencies during the course of PPV.ConclusionsThese results show that personalized NeoAg vaccination is feasible and safe for advanced-stage NSCLC patients. The clinical and immune responses observed following PPV suggest that EGFR mutations constitute shared, immunogenic neoantigens with promising immunotherapeutic potential for large subsets of NSCLC patients. Furthermore, PPV with concurrent EGFR inhibitor therapy was well tolerated and may have contributed to the induction of PPV-induced T cell responses.
Personalized immunotherapy targeting tumor-specific mutations represents a highly promising approach to cancer treatment. Here, we describe an Asian lung squamous cell carcinoma patient demonstrating frank disease progression following chemotherapy and EGFR inhibitor treatment. Based on tumor mutational profiling and HLA typing, a saline-based multi-epitope peptide vaccine was designed and administered along with topical imiquimod as an adjuvant. Weekly neo-epitope peptide vaccination was followed by a rapid and dramatic regression of multiple lung tumor nodules, while a much larger liver metastasis remained refractory to treatment. Peripheral blood immune monitoring showed that specific cytotoxic T lymphocytes (CTLs) were induced primarily against peptide targets encompassing the widely shared EGFR L858R mutation, particularly one restricted to HLA-A*3101. Immunological targeting of this driver mutation may be of particular benefit to Asian lung cancer patients due to its relatively high prevalence within this patient population.
Large-scale genomic characterization of non-small cell lung cancer (NSCLC) has revealed several putative oncogenic driver mutations that may constitute druggable therapeutic targets. However, there are little data to suggest that such gene alterations have clinical relevance. Over 12 consecutive months, tumor biopsy samples from 80 patients with stage IV NSCLC were analyzed for mutations in selected exons of 508 cancer-related genes using next-generation sequencing. From 85 specimens referred for genomic characterization, 80 (94%) specimens were successfully genotyped, and all had identifiable somatic alterations. Epidermal growth factor receptor (EGFR) and TP53 genes contained the highest frequency of observed mutations (65% and 40%, respectively) in the stage IV NSCLC cases. Notably, patients with EGFR mutations showed a significantly shorter survival time compared with patients expressing wild-type EGFR (p = 0.0053). Moreover, of the 32 patients harboring EGFR mutations, EGFR-L858R mutant patients showed a significantly shorter survival time compared with patients with other EGFR mutations (p = 0.036). In conclusion, tumors from stage IV NSCLC patients harbor characteristic gene alterations, of which EGFR L858R in particular appears to be a poor prognostic factor for overall survival.
Lung cancer is the leading cause of cancer-related deaths worldwide. However, factors associated with the survival of patients with advanced non-small-cell lung cancer (NSCLC) who received only hospice care are largely unclear. In this study, we aimed to determine the prognostic factors correlated with survival in patients with advanced NSCLC who had undergone hospice care only. METHODS: A total of 102 patients with recurrent stage III/IV NSCLC after traditional treatment failure were investigated. Survival was measured from the date of enrollment to December 2019 or the time of death. Tumor tissues were collected, and DNA sequencing was performed to identify somatic mutations. Data on clinical factors of patients were collected and analyzed by univariate and multivariate analyses. Overall survival analysis was conducted using the Kaplan-Meier method. RESULTS: The 6-month, 1-year, and 2-year overall survival rates of the 102 patients with metastatic NSCLC were 17.65%, 3.92%, and 0.98%, respectively. The median overall survival of the 102 patients was 3.15 months. Tumor location in the peripheral lung, epidermal growth factor receptor (EGFR) inhibitor history, low tumor mutation load, adenocarcinoma, and poor performance status score were associated with prolonged survival compared with tumor location in the central lung, no EGFR inhibitor history, high tumor mutation load, squamous cell carcinoma, and good performance status score (p=0.045, p=0.003, p=0.045, p=0.021, and p=0.0003, respectively). CONCLUSIONS: EGFR inhibitor treatment history and tumor mutation load are risk factors for the overall survival of patients with stage III/IV NSCLC who have undergone only hospice care. These results provide a critical clinical basis for further study of nontraditional anti-tumor responses induced by EGFR inhibitors.
BackgroundPatients with progressive thoracic malignancy characterized by large irregular tumors with necrosis and life-threatening symptoms lack effective treatments. We set out to develop a single needle cone puncture method for the Iodine-125 seed (SNCP-125I) brachytherapy, and aim to report the initial results.Methods294 patients with advanced thoracic malignancy were treated with local SNCP-125I brachytherapy between March 2009 and July 2020, followed by thorough evaluation of clinical outcome, overall survival (OS), progression-free survival (PFS) and procedure-related complications after treatment.ResultsThe overall response rate (ORR) among the treated patients was 81.0% (238/294). Life-threatening symptoms due to tumor oppression, hemoptysis and large irregular tumor with necrosis were successfully alleviated after the SNCP-125I treatment with a remission rate at 91% to 94%. The median OS and PFS were 13.6 months and 5.8 months, respectively. Procedure-related side effects including pneumothorax (32/294), blood-stained sputum (8/294), subcutaneous emphysema (10/294), puncture site bleeding (16/294) and chest pain (6/294) were observed. Patients who were able to follow with chemotherapy or immunotherapy experienced extended OS and PFS, as compared with patients who opted to receive hospice care (16.5 months Vs. 11.2 months). Further pathological and immunological analysis showed that SNCP-125I induced tumor lymphocytes infiltration and long-term tumor necrosis.ConclusionSNCP-125I brachytherapy effectively eliminates life-threatening symptoms due to local tumor oppression, hemoptysis and large irregular and necrotic tumors in patients with unresectable chest malignancy and significantly induces local tumor regression. SNCP-125I brachytherapy combines with chemotherapy significantly prolong OS and PFS compare with SNCP-125I brachytherapy alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.