Atherosclerosis is a significant cardiovascular burden and a leading cause of death worldwide, recognized as a chronic sterile inflammatory disease. Pyroptosis is a novel proinflammatory regulated cell death, characterized by cell swelling, plasma membrane bubbling, and robust release of proinflammatory cytokines (such as interleukin IL‐1β and IL‐18). Mounting studies have addressed the crucial contribution of pyroptosis to atherosclerosis and clarified the candidate therapeutic agents targeting pyroptosis for atherosclerosis. Herein, we review the initial characterization of pyroptosis, the detailed mechanisms of pyroptosis, current evidence about pyroptosis and atherosclerosis, and potential therapeutic strategies that target pyroptosis in the development of atherosclerosis.
The present meta-analysis suggests that compared with standard PTA/BMS, DES may decrease the risk of clinically driven TLR, restenosis rate, and amputation rate without any impact on mortality. However, DEB has no obvious advantage in the treatment of infrapopliteal disease. Due to the limitations of our study, more randomized controlled trials, especially those for DEB, are necessary.
An alternative to open repair was initially reported by Parodi in 1991.2) A covered stent was inserted within the aneurysm by an endoluminal route via the femoral artery. About 90 per cent of AAAs can be excluded from the circulation with low risk of subsequent aneurysm rupture, thereby reducing significantly postoperative pain, critical care requirement and hospital stay. 3,4) There are numerous reports on the long-term effects of patients after EVAR, including the DREAM, EVAR1 and EVAR2 studies. [5][6][7][8] These trials showed that EVAR is more likely to be more cost-effective than open repair in terms of operative mortality with no differences in mortality or aneurysm-related mortality existing between both groups in long-term. [5][6][7][8] However, patients undergoing the EVAR procedure have a higher rate of graft-related complications and more costly reinterventions. 8,9)
Background
Atherosclerotic plaque vulnerability is a key feature of atheroprogression and precipitating acute cardiovascular events. Although the pivotal role of epigenetic regulation in atherosclerotic plaque destabilization is being recognized, the DNA methylation profile and its potential role in driving the progression and destabilization of atherosclerotic cardiovascular disease remains largely unknown. We conducted a genome-wide analysis to identify differentially methylated genes in vulnerable and non-vulnerable atherosclerotic lesions to understand more about pathogenesis.
Results
We compared genome-wide DNA methylation profiling between carotid artery plaques of patients with clinically symptomatic (recent stroke or transient ischemic attack) and asymptomatic disease (no recent stroke) using Infinium Methylation BeadChip arrays, which revealed 90,368 differentially methylated sites (FDR < 0.05, |delta beta|> 0.03) corresponding to 14,657 annotated genes. Among these genomic sites, 30% were located at the promoter regions and 14% in the CpG islands, according to genomic loci and genomic proximity to the CpG islands, respectively. Moreover, 67% displayed hypomethylation in symptomatic plaques, and the differentially hypomethylated genes were found to be involved in various aspects of inflammation. Subsequently, we focus on CpG islands and revealed 14,596 differentially methylated sites (|delta beta|> 0.1) located at the promoter regions of 7048 genes. Integrated analysis of methylation and gene expression profiles identified that 107 genes were hypomethylated in symptomatic plaques and showed elevated expression levels in both advanced plaques and ruptured plaques. The imprinted gene PLA2G7, which encodes lipoprotein-associated phospholipase A2 (Lp-PLA2), was one of the top hypomethylated genes with an increased expression upon inflammation. Further, the hypomethylated CpG site at the promoter region of PLA2G7 was identified as cg11874627, demethylation of which led to increased binding of Sp3 and expression of Lp-PLA2 through bisulfate sequencing, chromatin immunoprecipitation assay and enzyme-linked immunosorbent assay. These effects were further enhanced by deacetylase.
Conclusion
Extensive DNA methylation modifications serve as a new and critical layer of biological regulation that contributes to atheroprogression and destabilization via inflammatory processes. Revelation of this hitherto unknown epigenetic regulatory mechanism could rejuvenate the prospects of Lp-PLA2 as a therapeutic target to stabilize the atherosclerotic plaque and reduce clinical sequelae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.