Abstract-In this paper, a novel design for a wideband integrated photovoltaic (PV) solar cell patch antenna for 5 GHz Wi-Fi communication is presented and discussed. The design consists of a slot loaded patch antenna with an array of complimentary split ring resonators (cSRR) etched in the ground plane. This is then integrated with a solar cell element placed above the patch, where the ground plane of the solar cell acts as a stacked antenna element from an RF perspective. The design is simulated on CST Microwave Studio and fabricated. The results indicate that an impedance bandwidth of 1 GHz is achieved to cover the 5 GHz Wi-Fi band with a directive gain of between 7.73 dBi and 8.18 dBi across this band. It is also demonstrated that size reduction of up to 25% can be achieved. Moreover, it is noted that using a metamaterial loaded ground plane acts as an impedance transformer, therefore the antenna can be fed directly with a 50 Ω microstrip feed line, hence further reducing the overall size.
This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.) 1 Considering the input pump power limitation and the complexity of the receiver bandwidth reduction, a novel wavelength diversity technique is employed together with a BRL in a conventional BOTDR system. The proposed system Abstract-In this paper, a wavelength diversity technique is employed in a Brillouin optical time domain reflectometry (BOTDR) using a Brillouin ring laser (BRL) as a local oscillator. In the wavelength diversity technique, multiple wavelengths are injected into the sensing fiber, while the peak power of each wavelength is set below the nonlinear threshold level. This technique significantly maximizes the overall launch pump power, without activating the non-negligible nonlinear effects, which overcomes the limitation of the conventional BOTDR system. The BRL, which is simple and cost-effective, that can be used to reduce the receiver bandwidth in the order of few MHz. In addition, a passive depolarizer is used to reduce the polarization noise. The proposed system is validated experimentally over a 50 km sensing fiber with a 5 m spatial resolution. The experimental results demonstrate a signal-to-noise ratio improvement of 5.1 dB, which corresponds to 180% improvement compared to a conventional BOTDR system. Index Terms-Wavelength diversity, distributed fibre sensors, Brillouin scattering.
Electric Vehicles (EV) are environment-friendly with lower CO2 emissions, and financial affordability (in term of battery based refuel) benefits. Here, when and where to recharge are sensitive factors significantly impacting the environmental and financial gains, these are still challenges to be tackled. In this paper, we propose a sustainable and smart EV charging scheme enables the preemptive charging functions for heterogeneous EVs equipped with various charging capabilities and brands. Our scheme intents to address the problems when EVs are with various ownerships and priority, in related to the services agreed with charging infrastructure operators. Particularly, the anticipated EVs' charging reservations information with heterogeneity (are multiscale) including their EV type, expected arrival time and charging waiting time at the charging stations (CSs), have been considered for design, planning and optimal decision making on the selection (i.e., where to charge) among the candidature CSs. We have conducted extensive simulation studies, by taking the realistic Helsinki city geographical and traffic scenarios as an example. The numerical results have confirmed that our proposed preemptive approach is better than the First-Come-First-Serve (FCFS) based system, associated with its significant improvement on the reservation feature in EV charging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.