Ceramic aerogels are attractive for thermal insulation but plagued by poor mechanical stability and degradation under thermal shock. In this study, we designed and synthesized hyperbolic architectured ceramic aerogels with nanolayered double-pane walls with a negative Poisson’s ratio (−0.25) and a negative linear thermal expansion coefficient (−1.8 × 10−6 per °C). Our aerogels display robust mechanical and thermal stability and feature ultralow densities down to ~0.1 milligram per cubic centimeter, superelasticity up to 95%, and near-zero strength loss after sharp thermal shocks (275°C per second) or intense thermal stress at 1400°C, as well as ultralow thermal conductivity in vacuum [~2.4 milliwatts per meter-kelvin (mW/m·K)] and in air (~20 mW/m·K). This robust material system is ideal for thermal superinsulation under extreme conditions, such as those encountered by spacecraft.
Entanglement-based quantum science exploits subtle properties of quantum mechanics into applications such as quantum computing, sensing, and metrology. The emerging route for quantum computing applications, which calls for ultracompact, integrated, and scalable architecture, aims at on-chip entangled qubits. In this context, quantum entanglement among atomic qubits was achieved via cold-controlled collisions which are only significant at subwavelength separations. However, as other manifolds of quantum state engineering require single-site addressability and controlled manipulation of the individual qubit using diffraction-limited optics, entanglement of qubits separated by macroscopic distances at the chip level is still an outstanding challenge. Here, we report a novel platform for on-chip quantum state engineering by harnessing the extraordinary light-molding capabilities of metasurfaces. We theoretically demonstrate quantum entanglement between two qubits trapped on a chip and separated by macroscopic distances, by engineering their coherent and dissipative interactions via the metasurface. Spatially scalable interaction channels offered by the metasurface enable robust generation of entanglement, with large values of concurrence and remarkable revival from sudden death. The metasurface route to quantum state engineering opens a new paradigm for on-chip quantum science and technologies.
The control of the exciton intervalley coherence renders transition metal dichalcogenides monolayers promising candidates for quantum information science. So far, generating intervalley coherence has the need for an external coherent field. Here, we theoretically demonstrate spontaneous generation (i.e., without any external field) of exciton intervalley coherence. We achieve this by manipulating the vacuum field in the vicinity of the monolayer with a designed polarization-dependent metasurface, inducing an anisotropic decay rate for in-plane excitonic dipoles. Harnessing quantum coherence and interference effects in two-dimensional materials may provide the route for novel quantum valleytronic devices.
We propose to realize effective beam-splitter-like and two-mode-squeezing photon-photon interactions in a strong coupling optomechanical interface by exploiting detuned driving lasers. In this interface, the transitions between the optical system and the mechanical oscillator are suppressed by the large energy offsets, therefore protecting the photon-photon interactions from mechanical dissipations. Moreover, the destructive quantum interference between the eigenmodes of the interface is capable of further reducing the effects of initial mechanical thermal occupations. The interface can serve as a universal block for photon state engineering and hybrid quantum networks in high-temperature thermal bath and without the requirement of cooling the mechanical oscillator to the ground state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.