Nucleotide second messengers, such as cAMP and c-di-GMP, regulate many physiological processes in bacteria, including biofilm formation. There is evidence of cross-talk between pathways mediated by c-di-GMP and those mediated by the cAMP receptor protein (CRP), but the mechanisms are often unclear. Here, we show that cAMP-CRP modulates biofilm maintenance in Shewanella putrefaciens not only via its known effects on gene transcription, but also through direct interaction with a putative c-di-GMP effector on the inner membrane, BpfD. Binding of cAMP-CRP to BpfD enhances the known interaction of BpfD with protease BpfG, which prevents proteolytic processing and release of a cell surface-associated adhesin, BpfA, thus contributing to biofilm maintenance. Our results provide evidence of cross-talk between cAMP and c-di-GMP pathways through direct interaction of their effectors, and indicate that cAMP-CRP can play regulatory roles at the post-translational level.
The well-known Crp/Fnr family regulator Fnr has long been recognized as an oxygen sensor to regulate multiple biological processes, including the switch between aerobic/anaerobic metabolism, nitrogen fixation, bioluminescence, infection, and virulence. In most cases, Fnr was found to be active under anaerobic conditions. However, its role in aerobic antibiotic metabolism has not yet been revealed. In this research, we report that in the model organism, Serratia sp. ATCC 39006, Fnr (Ser39006_013370) negatively regulates prodigiosin production by binding to the spacer between the −10 and −35 region in the promoter of prodigiosin biosynthetic gene cluster under aerobic conditions. Fnr was also shown to modulate the anti-bacterial activity and motility by regulating pathway-specific regulatory genes, indicating that Fnr acts as a global regulator in Serratia sp. ATCC 39006. For the first time, we describe that Fnr regulates antibiotic synthesis in the presence of oxygen, which expands the known physiological functions of Fnr and benefits the further investigation of this important transcriptional regulator.
Shewanella shows good application potentials in the decolorization and detoxification of azo dye wastewater. However, the molecular mechanism of decolorization is still lacking. In this study, it was found that Shewanella putrefaciens CN32 exhibited good decolorization ability to various azo dyes, and a global regulatory protein cAMP receptor protein (Crp) was identified to be required for the decolorization of acid yellow 36 (AY) by constructing a transposon mutant library. Then, the molecular mechanism of AY decolorization regulated by Crp was further investigated. RT-qPCR and electrophoretic mobility shift assay (EMSA) results showed that Crp was able to directly bind to the promoter region of the cymA gene and promote its expression. Riboflavin acting as an electron shuttle could accelerate the AY decolorization efficiency of S. putrefaciens CN32 wild-type (WT) but did not show a promoting effect to Δcrp mutant and ΔcymA mutant, further confirming that Crp promotes the decolorization through regulating electron transport chains. Moreover, the mutant with cymA overexpression could slightly enhance the AY decolorization efficiency compared with the WT strain. In addition, it was found that MtrA, MtrB, and MtrC partially contribute to the electron transfer from CymA to dye molecules, and other main electron transport chains need to be identified in future experiments. This study revealed the molecular mechanism of a global regulator Crp regulating the decolorization of azo dye, which is helpful in understanding the relationship between the decolorization and other metabolic processes in S. putrefaciens CN32.
The biosynthesis of prodigiosin in the model prodigiosin-producing strain, Serratia sp. ATCC 39006, is significantly influenced by environmental and cellular signals. However, a comprehensive regulatory mechanism for this process has not been well established. In the present study, we demonstrate that organic hydroperoxide activates prodigiosin biosynthesis in an OhrR-dependent manner. Specifically, the MarR-family transcriptional repressor OhrR (Ser39006_RS05455) binds to its operator located far upstream of the promoter region of the prodigiosin biosynthesis operon (319–286 nt upstream of the transcription start site) and negatively regulates the expression of prodigiosin biosynthesis genes. Organic hydroperoxide disassociates the binding between OhrR and its operator, thereby promoting the prodigiosin production. Moreover, OhrR modulates the resistance of Serratia sp. ATCC 39006 to organic hydroperoxide by regulating the transcription of its own gene and the downstream co-transcribed ohr gene. These results demonstrate that OhrR is a pleiotropic repressor that modulates the prodigiosin production and the resistance of Serratia sp. ATCC 39006 to organic hydroperoxide stress. IMPORTANCE Bacteria naturally encounter various environmental and cellular stresses. Organic hydroperoxides generated from the oxidation of polyunsaturated fatty acids are widely distributed and usually cause lethal oxidative stress by damaging cellular components. OhrR is known as a regulator which modulates the resistance of bacteria to organic hydroperoxide stress. In the current study, organic hydroperoxide disassociates OhrR from the promoter of prodigiosin biosynthesis gene cluster, thus promoting transcription of pigA-O genes. In this model, organic hydroperoxide acts as an inducer of prodigiosin synthesis in Serratia sp. ATCC 39006. These results improve our understanding of the regulatory network of prodigiosin synthesis and serve as an example for identifying the cross-talk between the stress responses and the regulation of secondary metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.