Background:Nestin, an intermediate filament (IF) protein, is expressed in proliferating progenitor cells of developmental and regenerating tissues, and is identified as a neuroepithelial precursor cell marker. Recently, nestin was detected in some neoplasms such as glioma, ependymoma, melanoma, rhabdomyosarcoma, gastrointestinal stromal tumour (GIST), and testicular stromal tumour. Moreover, the expression intensity of nestin exhibited significant correlation with the malignant grade of glioma.Aims:To detect the expression of nestin in different tumours and to analyse the relationship between the expression of nestin and the malignant grade of the tumours.Methods:Formalin-fixed and paraffin-embedded surgical samples of neoplastic tissues were obtained from the Department of Pathology of Sun Yat-sen University. Histological analysis and immunohistochemical staining for nestin were performed. Histoscores were analysed by semi-quantitative evaluation.Results:Nestin was expressed predominantly in the cytoplasm of angiosarcoma, pancreatic adenocarcinoma and GIST samples, and some tumour cells expressed in the nucleus. There was a statistically significant difference between the histoscore of nestin in high malignant GIST (2.2366 (0.6920)) and that in low malignant GIST (1.3783 (0.4268)) (p = 0.003); and also between that in high malignant angiosarcoma (1.9188 (0.2069)) and that in low malignant angiosarcoma (0.6474 (0.3273)) (p = 0.000). Cavernous angioma did not express nestin. The histoscore of nestin in high malignant pancreatic adenocarcinoma (7/14) was 1.1767 (0.4676), and that in low malignant pancreatic adenocarcinoma (3/8) was 0.6577 (0.0056) (no significant difference, p = 0.112).Conclusions:Results suggest that the expression of nestin may play an important role in the development of some neoplasms such as GIST and angiosarcoma.
In this study, the in vivo bone-regenerative potential of a novel bioactive glass-collagen-hyaluronic acid-Phosphatidylserine (BG-COL-HYA-PS) composite scaffold hybridized with mesenchymal stem cells (MSCs) was investigated in a rat bone defect model. HrGFP-labeled MSCs were cultured for 2 weeks on the BG-COL-HYA-PS scaffold before implantation into the defect. A cell-free scaffold and an untreated defect were used as controls. The regeneration process was evaluated by histology, X-ray, and mechanical rigidity experiments at different time points post-implantation. The results revealed that BG-COL-HYA-PS scaffold exhibited a low inflammatory response and foreign body response within 3 weeks. At week 6, those responses disappeared following the resorption of scaffolds and the formation of new bone. Compared with the pure scaffold or empty group, the introduction of MSCs into the porous scaffold dramatically enhanced the efficiency of the new bone formation and biomechanical property of the femur. In addition, the transplanted MSCs could survive for up to 3 weeks or longer. The results demonstrated that the BG-COL-HYA-PS scaffold was biocompatible and osteoconductive and the transplanted MSCs with the scaffold enhanced the healing of the bone defect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.