Global warming is widely regarded to have played a contributing role in numerous past biotic crises. Here, we show that the end-Permian mass extinction coincided with a rapid temperature rise to exceptionally high values in the Early Triassic that were inimical to life in equatorial latitudes and suppressed ecosystem recovery. This was manifested in the loss of calcareous algae, the near-absence of fish in equatorial Tethys, and the dominance of small taxa of invertebrates during the thermal maxima. High temperatures drove most Early Triassic plants and animals out of equatorial terrestrial ecosystems and probably were a major cause of the end-Smithian crisis.
Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary remain contentious. We use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, underscoring the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.
The 260-million-year-old Emeishan volcanic province of southwest China overlies and is interbedded with Middle Permian carbonates that contain a record of the Guadalupian mass extinction. Sections in the region thus provide an opportunity to directly monitor the relative timing of extinction and volcanism within the same locations. These show that the onset of volcanism was marked by both large phreatomagmatic eruptions and extinctions amongst fusulinacean foraminifers and calcareous algae. The temporal coincidence of these two phenomena supports the idea of a cause-and-effect relationship. The crisis predates the onset of a major negative carbon isotope excursion that points to subsequent severe disturbance of the ocean-atmosphere carbon cycle.
High-resolution oxygen isotope records document the timing and magnitude of global warming across the Permian-Triassic (P-Tr) boundary. Oxygen isotope ratios measured on phosphate-bound oxygen in conodont apatite from the Meishan and Shangsi sections (South China) decrease by 2‰ in the latest Permian, translating into low-latitude surface water warming of 8 °C. The oxygen isotope shift coincides with the negative shift in carbon isotope ratios of carbonates, suggesting that the addition of isotopically light carbon to the ocean-atmosphere system by Siberian Traps volcanism and related processes resulted in higher greenhouse gas levels and global warming. The major temperature rise started immediately before the main extinction phase, with maximum and harmful temperatures documented in the latest Permian (Meishan: bed 27). The coincidence of climate warming and the main pulse of extinction suggest that global warming was one of the causes of the collapse of the marine and terrestrial ecosystems. In addition, very warm climate conditions in the Early Triassic may have played a major role in the delayed recovery in the aftermath of the Permian-Triassic crisis.
Coeval records of ocean, atmosphere, and terrestrial change are crucial to understanding the pattern and causes of global mass extinction across the Permian-Triassic boundary (PTB). However, relationships among changes in different settings remain largely unclear, primarily due to the challenges associated with the correlation among disparate records. Here we compare marine carbon isotopic records with marine and terrestrial environmental and biotic events recorded in sediments from the Meishan PTB section of south China. Timescaled carbonate carbon isotopes exhibit two gradual major shifts across the PTB at Meishan, and these are duplicable elsewhere around the Tethys Ocean. The two shifts are associated with two episodes of enhanced terrestrial weathering indicated by an increased abundance of 13 C-enriched moretanes relative to hopanes and an elevated abundance of black carbon fragments. Key marine events previously reported for the PTB, including photic zone euxinia, faunal mass extinction, and cyanobacterial expansion, also occur as two episodes, coinciding with both of the progressive shifts to negative δ 13 C values and enhanced weathering. The temporal sequence of the duplicable events suggests that the biotic crisis was a consequence of prolonged and episodic changes in the marine and continental systems, and argues against an extraterrestrial impact as the main cause.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.